Abstract:Designing free-form photonic devices is fundamentally challenging due to the vast number of possible geometries and the complex requirements of fabrication constraints. Traditional inverse-design approaches--whether driven by human intuition, global optimization, or adjoint-based gradient methods--often involve intricate binarization and filtering steps, while recent deep learning strategies demand prohibitively large numbers of simulations (10^5 to 10^6). To overcome these limitations, we present AdjointDiffusion, a physics-guided framework that integrates adjoint sensitivity gradients into the sampling process of diffusion models. AdjointDiffusion begins by training a diffusion network on a synthetic, fabrication-aware dataset of binary masks. During inference, we compute the adjoint gradient of a candidate structure and inject this physics-based guidance at each denoising step, steering the generative process toward high figure-of-merit (FoM) solutions without additional post-processing. We demonstrate our method on two canonical photonic design problems--a bent waveguide and a CMOS image sensor color router--and show that our method consistently outperforms state-of-the-art nonlinear optimizers (such as MMA and SLSQP) in both efficiency and manufacturability, while using orders of magnitude fewer simulations (approximately 2 x 10^2) than pure deep learning approaches (approximately 10^5 to 10^6). By eliminating complex binarization schedules and minimizing simulation overhead, AdjointDiffusion offers a streamlined, simulation-efficient, and fabrication-aware pipeline for next-generation photonic device design. Our open-source implementation is available at https://github.com/dongjin-seo2020/AdjointDiffusion.
Abstract:Designing photonic structures requires electromagnetic simulations, which often require high computational costs. Researchers have developed surrogate solvers for predicting electric fields to alleviate the computational issues. However, existing surrogate solvers are limited to performing inference at fixed simulation conditions and require retraining for different conditions. To address this, we propose Wave Interpolation Neural Operator (WINO), a novel surrogate solver enabling simulation condition interpolation across a continuous spectrum of broadband wavelengths. WINO introduces the Fourier Group Convolution Shuffling operator and a new conditioning method to efficiently predict electric fields from both trained and untrained wavelength data, achieving significant improvements in parameter efficiency and spectral interpolation performance. Our model demonstrates approximately 100 times faster performance than traditional finite-difference frequency-domain simulations. Moreover, compared to the state-of-the-art model, we achieve a 74% reduction in parameters and 80.5% improvements in prediction accuracy for untrained wavelengths, and 13.2% improvements for trained wavelengths.