Abstract:Recent advancements in Large Multimodal Models (LMMs) have attracted interest in their generalization capability with only a few samples in the prompt. This progress is particularly relevant to the medical domain, where the quality and sensitivity of data pose unique challenges for model training and application. However, the dependency on high-quality data for effective in-context learning raises questions about the feasibility of these models when encountering with the inevitable variations and errors inherent in real-world medical data. In this paper, we introduce MID-M, a novel framework that leverages the in-context learning capabilities of a general-domain Large Language Model (LLM) to process multimodal data via image descriptions. MID-M achieves a comparable or superior performance to task-specific fine-tuned LMMs and other general-domain ones, without the extensive domain-specific training or pre-training on multimodal data, with significantly fewer parameters. This highlights the potential of leveraging general-domain LLMs for domain-specific tasks and offers a sustainable and cost-effective alternative to traditional LMM developments. Moreover, the robustness of MID-M against data quality issues demonstrates its practical utility in real-world medical domain applications.
Abstract:Data-to-text (D2T) generation is the task of generating texts from structured inputs. We observed that when the same target sentence was repeated twice, Transformer (T5) based model generates an output made up of asymmetric sentences from structured inputs. In other words, these sentences were different in length and quality. We call this phenomenon "Asymmetric Generation" and we exploit this in D2T generation. Once asymmetric sentences are generated, we add the first part of the output with a no-repeated-target. As this goes through progressive edit (ProEdit), the recall increases. Hence, this method better covers structured inputs than before editing. ProEdit is a simple but effective way to improve performance in D2T generation and it achieves the new stateof-the-art result on the ToTTo dataset