Abstract:The widespread deployment of large language models (LLMs) has led to impressive advancements, yet information about their training data, a critical factor in their performance, remains undisclosed. Membership inference attacks (MIAs) aim to determine whether a specific instance was part of a target model's training data. MIAs can offer insights into LLM outputs and help detect and address concerns such as data contamination and compliance with privacy and copyright standards. However, applying MIAs to LLMs presents unique challenges due to the massive scale of pre-training data and the ambiguous nature of membership. Additionally, creating appropriate benchmarks to evaluate MIA methods is not straightforward, as training and test data distributions are often unknown. In this paper, we introduce EM-MIA, a novel MIA method for LLMs that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm, leveraging the duality that the estimates of these scores can be improved by each other. Membership scores and prefix scores assess how each instance is likely to be a member and discriminative as a prefix, respectively. Our method achieves state-of-the-art results on the WikiMIA dataset. To further evaluate EM-MIA, we present OLMoMIA, a benchmark built from OLMo resources, which allows us to control the difficulty of MIA tasks with varying degrees of overlap between training and test data distributions. We believe that EM-MIA serves as a robust MIA method for LLMs and that OLMoMIA provides a valuable resource for comprehensively evaluating MIA approaches, thereby driving future research in this critical area.
Abstract:Research on Korean grammatical error correction (GEC) is limited compared to other major languages such as English and Chinese. We attribute this problematic circumstance to the lack of a carefully designed evaluation benchmark for Korean. Thus, in this work, we first collect three datasets from different sources (Kor-Lang8, Kor-Native, and Kor-Learner) to cover a wide range of error types and annotate them using our newly proposed tool called Korean Automatic Grammatical error Annotation System (KAGAS). KAGAS is a carefully designed edit alignment & classification tool that considers the nature of Korean on generating an alignment between a source sentence and a target sentence, and identifies error types on each aligned edit. We also present baseline models fine-tuned over our datasets. We show that the model trained with our datasets significantly outperforms the public statistical GEC system (Hanspell) on a wider range of error types, demonstrating the diversity and usefulness of the datasets.
Abstract:Building dense retrievers requires a series of standard procedures, including training and validating neural models and creating indexes for efficient search. However, these procedures are often misaligned in that training objectives do not exactly reflect the retrieval scenario at inference time. In this paper, we explore how the gap between training and inference in dense retrieval can be reduced, focusing on dense phrase retrieval (Lee et al., 2021) where billions of representations are indexed at inference. Since validating every dense retriever with a large-scale index is practically infeasible, we propose an efficient way of validating dense retrievers using a small subset of the entire corpus. This allows us to validate various training strategies including unifying contrastive loss terms and using hard negatives for phrase retrieval, which largely reduces the training-inference discrepancy. As a result, we improve top-1 phrase retrieval accuracy by 2~3 points and top-20 passage retrieval accuracy by 2~4 points for open-domain question answering. Our work urges modeling dense retrievers with careful consideration of training and inference via efficient validation while advancing phrase retrieval as a general solution for dense retrieval.
Abstract:Limited computational budgets often prevent transformers from being used in production and from having their high accuracy utilized. TinyBERT addresses the computational efficiency by self-distilling BERT into a smaller transformer representation having fewer layers and smaller internal embedding. However, TinyBERT's performance drops when we reduce the number of layers by 50%, and drops even more abruptly when we reduce the number of layers by 75% for advanced NLP tasks such as span question answering. Additionally, a separate model must be trained for each inference scenario with its distinct computational budget. In this work we present Dynamic-TinyBERT, a TinyBERT model that utilizes sequence-length reduction and Hyperparameter Optimization for enhanced inference efficiency per any computational budget. Dynamic-TinyBERT is trained only once, performing on-par with BERT and achieving an accuracy-speedup trade-off superior to any other efficient approaches (up to 3.3x with <1% loss-drop). Upon publication, the code to reproduce our work will be open-sourced.
Abstract:Data augmentation with mixup has shown to be effective on various computer vision tasks. Despite its great success, there has been a hurdle to apply mixup to NLP tasks since text consists of discrete tokens with variable length. In this work, we propose SSMix, a novel mixup method where the operation is performed on input text rather than on hidden vectors like previous approaches. SSMix synthesizes a sentence while preserving the locality of two original texts by span-based mixing and keeping more tokens related to the prediction relying on saliency information. With extensive experiments, we empirically validate that our method outperforms hidden-level mixup methods on a wide range of text classification benchmarks, including textual entailment, sentiment classification, and question-type classification. Our code is available at https://github.com/clovaai/ssmix.
Abstract:We propose an effective consistency training framework that enforces a training model's predictions given original and perturbed inputs to be similar by adding a discrete noise that would incur the highest divergence between predictions. This virtual adversarial discrete noise obtained by replacing a small portion of tokens while keeping original semantics as much as possible efficiently pushes a training model's decision boundary. Moreover, we perform an iterative refinement process to alleviate the degraded fluency of the perturbed sentence due to the conditional independence assumption. Experimental results show that our proposed method outperforms other consistency training baselines with text editing, paraphrasing, or a continuous noise on semi-supervised text classification tasks and a robustness benchmark.
Abstract:End-to-end approaches open a new way for more accurate and efficient spoken language understanding (SLU) systems by alleviating the drawbacks of traditional pipeline systems. Previous works exploit textual information for an SLU model via pre-training with automatic speech recognition or fine-tuning with knowledge distillation. To utilize textual information more effectively, this work proposes a two-stage textual knowledge distillation method that matches utterance-level representations and predicted logits of two modalities during pre-training and fine-tuning, sequentially. We use vq-wav2vec BERT as a speech encoder because it captures general and rich features. Furthermore, we improve the performance, especially in a low-resource scenario, with data augmentation methods by randomly masking spans of discrete audio tokens and contextualized hidden representations. Consequently, we push the state-of-the-art on the Fluent Speech Commands, achieving 99.7% test accuracy in the full dataset setting and 99.5% in the 10% subset setting. Throughout the ablation studies, we empirically verify that all used methods are crucial to the final performance, providing the best practice for spoken language understanding. Code to reproduce our results will be available upon publication.
Abstract:Language model pre-training has shown promising results in various downstream tasks. In this context, we introduce a cross-modal pre-trained language model, called Speech-Text BERT (ST-BERT), to tackle end-to-end spoken language understanding (E2E SLU) tasks. Taking phoneme posterior and subword-level text as an input, ST-BERT learns a contextualized cross-modal alignment via our two proposed pre-training tasks: Cross-modal Masked Language Modeling (CM-MLM) and Cross-modal Conditioned Language Modeling (CM-CLM). Experimental results on three benchmarks present that our approach is effective for various SLU datasets and shows a surprisingly marginal performance degradation even when 1% of the training data are available. Also, our method shows further SLU performance gain via domain-adaptive pre-training with domain-specific speech-text pair data.
Abstract:Although transformers have achieved impressive accuracies in various tasks in natural language processing, they often come with a prohibitive computational cost, that prevents their use in scenarios with limited computational resources for inference. This need for computational efficiency in inference has been addressed by for instance PoWER-BERT (Goyal et al., 2020) which gradually decreases the length of a sequence as it is passed through layers. These approaches however often assume that the target computational complexity is known in advance at the time of training. This implies that a separate model must be trained for each inference scenario with its distinct computational budget. In this paper, we extend PoWER-BERT to address this issue of inefficiency and redundancy. The proposed extension enables us to train a large-scale transformer, called Length-Adaptive Transformer, once and uses it for various inference scenarios without re-training it. To do so, we train a transformer with LengthDrop, a structural variant of dropout, which stochastically determines the length of a sequence at each layer. We then use a multi-objective evolutionary search to find a length configuration that maximizes the accuracy and minimizes the computational complexity under any given computational budget. Additionally, we significantly extend the applicability of PoWER-BERT beyond sequence-level classification into token-level classification such as span-based question-answering, by introducing the idea of Drop-and-Restore. With Drop-and-Restore, word-vectors are dropped temporarily in intermediate layers and restored at the last layer if necessary. We empirically verify the utility of the proposed approach by demonstrating the superior accuracy-efficiency trade-off under various setups, including SQuAD 1.1, MNLI-m, and SST-2. Code is available at https://github.com/clovaai/length-adaptive-transformer.
Abstract:Product key memory (PKM) proposed by Lample et al. (2019) enables to improve prediction accuracy by increasing model capacity efficiently with insignificant computational overhead. However, their empirical application is only limited to causal language modeling. Motivated by the recent success of pretrained language models (PLMs), we investigate how to incorporate large PKM into PLMs that can be finetuned for a wide variety of downstream NLP tasks. We define a new memory usage metric, and careful observation using this metric reveals that most memory slots remain outdated during the training of PKM-augmented models. To train better PLMs by tackling this issue, we propose simple but effective solutions: (1) initialization from the model weights pretrained without memory and (2) augmenting PKM by addition rather than replacing a feed-forward network. We verify that both of them are crucial for the pretraining of PKM-augmented PLMs, enhancing memory utilization and downstream performance. Code and pretrained weights are available at https://github.com/clovaai/pkm-transformers.