Abstract:Identifying metabolic sites where cytochrome P450 enzymes metabolize small-molecule drugs is essential for drug discovery. Although existing computational approaches have been proposed for site-of-metabolism prediction, they typically ignore cytochrome P450 isoform identity or model isoforms independently, thereby failing to fully capture inherent cross-isoform metabolic patterns. In addition, prior evaluations often rely on top-k metrics, where false positive atoms may be included among the top predictions, underscoring the need for complementary metrics that more directly assess binary atom-level discrimination under severe class imbalance. We propose ATTNSOM, an atom-level site-of-metabolism prediction framework that integrates intrinsic molecular reactivity with cross-isoform relationships. The model combines a shared graph encoder, molecule-conditioned atom representations, and a cross-attention mechanism to capture correlated metabolic patterns across cytochrome P450 isoforms. The model is evaluated on two benchmark datasets annotated with site-of-metabolism labels at atom resolution. Across these benchmarks, the model achieves consistently strong top-k performance across multiple cytochrome P450 isoforms. Relative to ablated variants, the model yields higher Matthews correlation coefficient, indicating improved discrimination of true metabolic sites. These results support the importance of explicitly modeling cross-isoform relationships for site-of-metabolism prediction. The code and datasets are available at https://github.com/dmis-lab/ATTNSOM.
Abstract:Large Vision-Language Models (LVLMs) hold significant promise for medical applications, yet their deployment is often constrained by insufficient alignment and reliability. While Direct Preference Optimization (DPO) has emerged as a potent framework for refining model responses, its efficacy in high-stakes medical contexts remains underexplored, lacking the rigorous empirical groundwork necessary to guide future methodological advances. To bridge this gap, we present the first comprehensive examination of diverse DPO variants within the medical domain, evaluating nine distinct formulations across two medical LVLMs: LLaVA-Med and HuatuoGPT-Vision. Our results reveal several critical limitations: current DPO approaches often yield inconsistent gains over supervised fine-tuning, with their efficacy varying significantly across different tasks and backbones. Furthermore, they frequently fail to resolve fundamental visual misinterpretation errors. Building on these insights, we present a targeted preference construction strategy as a proof-of-concept that explicitly addresses visual misinterpretation errors frequently observed in existing DPO models. This design yields a 3.6% improvement over the strongest existing DPO baseline on visual question-answering tasks. To support future research, we release our complete framework, including all training data, model checkpoints, and our codebase at https://github.com/dmis-lab/med-vlm-dpo.
Abstract:Social engineering scams increasingly employ personalized, multi-turn deception, exposing the limits of traditional detection methods. While Large Language Models (LLMs) show promise in identifying deception, their cognitive assistance potential remains underexplored. We propose ScriptMind, an integrated framework for LLM-based scam detection that bridges automated reasoning and human cognition. It comprises three components: the Crime Script Inference Task (CSIT) for scam reasoning, the Crime Script-Aware Inference Dataset (CSID) for fine-tuning small LLMs, and the Cognitive Simulation-based Evaluation of Social Engineering Defense (CSED) for assessing real-time cognitive impact. Using 571 Korean phone scam cases, we built 22,712 structured scammer-sequence training instances. Experimental results show that the 11B small LLM fine-tuned with ScriptMind outperformed GPT-4o by 13%, achieving superior performance over commercial models in detection accuracy, false-positive reduction, scammer utterance prediction, and rationale quality. Moreover, in phone scam simulation experiments, it significantly enhanced and sustained users' suspicion levels, improving their cognitive awareness of scams. ScriptMind represents a step toward human-centered, cognitively adaptive LLMs for scam defense.
Abstract:Medication recommendation is a crucial task for assisting physicians in making timely decisions from longitudinal patient medical records. However, real-world EHR data present significant challenges due to the presence of rarely observed medical entities and incomplete records that may not fully capture the clinical ground truth. While data-driven models trained on longitudinal Electronic Health Records often achieve strong empirical performance, they struggle to generalize under missing or novel conditions, largely due to their reliance on observed co-occurrence patterns. To address these issues, we propose Hierarchical Ontology and Network Refinement for Robust Medication Recommendation (HiRef), a unified framework that combines two complementary structures: (i) the hierarchical semantics encoded in curated medical ontologies, and (ii) refined co-occurrence patterns derived from real-world EHRs. We embed ontology entities in hyperbolic space, which naturally captures tree-like relationships and enables knowledge transfer through shared ancestors, thereby improving generalizability to unseen codes. To further improve robustness, we introduce a prior-guided sparse regularization scheme that refines the EHR co-occurrence graph by suppressing spurious edges while preserving clinically meaningful associations. Our model achieves strong performance on EHR benchmarks (MIMIC-III and MIMIC-IV) and maintains high accuracy under simulated unseen-code settings. Extensive experiments with comprehensive ablation studies demonstrate HiRef's resilience to unseen medical codes, supported by in-depth analyses of the learned sparsified graph structure and medical code embeddings.
Abstract:Extreme activation outliers in Large Language Models (LLMs) critically degrade quantization performance, hindering efficient on-device deployment. While channel-wise operations and adaptive gradient scaling are recognized causes, practical mitigation remains challenging. We introduce Outlier-Safe Pre-Training (OSP), a practical guideline that proactively prevents outlier formation rather than relying on post-hoc mitigation. OSP combines three key innovations: (1) the Muon optimizer, eliminating privileged bases while maintaining training efficiency; (2) Single-Scale RMSNorm, preventing channel-wise amplification; and (3) a learnable embedding projection, redistributing activation magnitudes originating from embedding matrices. We validate OSP by training a 1.4B-parameter model on 1 trillion tokens, which is the first production-scale LLM trained without such outliers. Under aggressive 4-bit quantization, our OSP model achieves a 35.7 average score across 10 benchmarks (compared to 26.5 for an Adam-trained model), with only a 2% training overhead. Remarkably, OSP models exhibit near-zero excess kurtosis (0.04) compared to extreme values (1818.56) in standard models, fundamentally altering LLM quantization behavior. Our work demonstrates that outliers are not inherent to LLMs but are consequences of training strategies, paving the way for more efficient LLM deployment. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Outlier-Safe-Pre-Training.
Abstract:Large language models have shown promise in clinical decision making, but current approaches struggle to localize and correct errors at specific steps of the reasoning process. This limitation is critical in medicine, where identifying and addressing reasoning errors is essential for accurate diagnosis and effective patient care. We introduce Med-PRM, a process reward modeling framework that leverages retrieval-augmented generation to verify each reasoning step against established medical knowledge bases. By verifying intermediate reasoning steps with evidence retrieved from clinical guidelines and literature, our model can precisely assess the reasoning quality in a fine-grained manner. Evaluations on five medical QA benchmarks and two open-ended diagnostic tasks demonstrate that Med-PRM achieves state-of-the-art performance, with improving the performance of base models by up to 13.50% using Med-PRM. Moreover, we demonstrate the generality of Med-PRM by integrating it in a plug-and-play fashion with strong policy models such as Meerkat, achieving over 80\% accuracy on MedQA for the first time using small-scale models of 8 billion parameters. Our code and data are available at: https://med-prm.github.io/




Abstract:While the ability of language models to elicit facts has been widely investigated, how they handle temporally changing facts remains underexplored. We discover Temporal Heads, specific attention heads primarily responsible for processing temporal knowledge through circuit analysis. We confirm that these heads are present across multiple models, though their specific locations may vary, and their responses differ depending on the type of knowledge and its corresponding years. Disabling these heads degrades the model's ability to recall time-specific knowledge while maintaining its general capabilities without compromising time-invariant and question-answering performances. Moreover, the heads are activated not only numeric conditions ("In 2004") but also textual aliases ("In the year ..."), indicating that they encode a temporal dimension beyond simple numerical representation. Furthermore, we expand the potential of our findings by demonstrating how temporal knowledge can be edited by adjusting the values of these heads.
Abstract:Motivation: Predicting cellular responses to genetic perturbations is essential for understanding biological systems and developing targeted therapeutic strategies. While variational autoencoders (VAEs) have shown promise in modeling perturbation responses, their limited explainability poses a significant challenge, as the learned features often lack clear biological meaning. Nevertheless, model explainability is one of the most important aspects in the realm of biological AI. One of the most effective ways to achieve explainability is incorporating the concept of gene regulatory networks (GRNs) in designing deep learning models such as VAEs. GRNs elicit the underlying causal relationships between genes and are capable of explaining the transcriptional responses caused by genetic perturbation treatments. Results: We propose GPO-VAE, an explainable VAE enhanced by GRN-aligned Parameter Optimization that explicitly models gene regulatory networks in the latent space. Our key approach is to optimize the learnable parameters related to latent perturbation effects towards GRN-aligned explainability. Experimental results on perturbation prediction show our model achieves state-of-the-art performance in predicting transcriptional responses across multiple benchmark datasets. Furthermore, additional results on evaluating the GRN inference task reveal our model's ability to generate meaningful GRNs compared to other methods. According to qualitative analysis, GPO-VAE posseses the ability to construct biologically explainable GRNs that align with experimentally validated regulatory pathways. GPO-VAE is available at https://github.com/dmis-lab/GPO-VAE


Abstract:The objective of BioCreative8 Track 3 is to extract phenotypic key medical findings embedded within EHR texts and subsequently normalize these findings to their Human Phenotype Ontology (HPO) terms. However, the presence of diverse surface forms in phenotypic findings makes it challenging to accurately normalize them to the correct HPO terms. To address this challenge, we explored various models for named entity recognition and implemented data augmentation techniques such as synonym marginalization to enhance the normalization step. Our pipeline resulted in an exact extraction and normalization F1 score 2.6\% higher than the mean score of all submissions received in response to the challenge. Furthermore, in terms of the normalization F1 score, our approach surpassed the average performance by 1.9\%. These findings contribute to the advancement of automated medical data extraction and normalization techniques, showcasing potential pathways for future research and application in the biomedical domain.




Abstract:Understanding the internal computations of large language models (LLMs) is crucial for aligning them with human values and preventing undesirable behaviors like toxic content generation. However, mechanistic interpretability is hindered by polysemanticity -- where individual neurons respond to multiple, unrelated concepts. While Sparse Autoencoders (SAEs) have attempted to disentangle these features through sparse dictionary learning, they have compromised LLM performance due to reliance on post-hoc reconstruction loss. To address this issue, we introduce Mixture of Monosemantic Experts for Transformers (Monet) architecture, which incorporates sparse dictionary learning directly into end-to-end Mixture-of-Experts pretraining. Our novel expert decomposition method enables scaling the expert count to 262,144 per layer while total parameters scale proportionally to the square root of the number of experts. Our analyses demonstrate mutual exclusivity of knowledge across experts and showcase the parametric knowledge encapsulated within individual experts. Moreover, Monet allows knowledge manipulation over domains, languages, and toxicity mitigation without degrading general performance. Our pursuit of transparent LLMs highlights the potential of scaling expert counts to enhance} mechanistic interpretability and directly resect the internal knowledge to fundamentally adjust} model behavior. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Monet.