Abstract:AI computing and data centers consume a large amount of freshwater, both directly for cooling and indirectly for electricity generation. While most attention has been paid to developed countries such as the U.S., this paper presents the first-of-its-kind dataset that combines nation-level weather and electricity generation data to estimate water usage efficiency for data centers in 41 African countries across five different climate regions. We also use our dataset to evaluate and estimate the water consumption of inference on two large language models (i.e., Llama-3-70B and GPT-4) in 11 selected African countries. Our findings show that writing a 10-page report using Llama-3-70B could consume about \textbf{0.7 liters} of water, while the water consumption by GPT-4 for the same task may go up to about 60 liters. For writing a medium-length email of 120-200 words, Llama-3-70B and GPT-4 could consume about \textbf{0.13 liters} and 3 liters of water, respectively. Interestingly, given the same AI model, 8 out of the 11 selected African countries consume less water than the global average, mainly because of lower water intensities for electricity generation. However, water consumption can be substantially higher in some African countries with a steppe climate than the U.S. and global averages, prompting more attention when deploying AI computing in these countries. Our dataset is publicly available on \href{https://huggingface.co/datasets/masterlion/WaterEfficientDatasetForAfricanCountries/tree/main}{Hugging Face}.
Abstract:Consistency models have recently been introduced to accelerate sampling from diffusion models by directly predicting the solution (i.e., data) of the probability flow ODE (PF ODE) from initial noise. However, the training of consistency models requires learning to map all intermediate points along PF ODE trajectories to their corresponding endpoints. This task is much more challenging than the ultimate objective of one-step generation, which only concerns the PF ODE's noise-to-data mapping. We empirically find that this training paradigm limits the one-step generation performance of consistency models. To address this issue, we generalize consistency training to the truncated time range, which allows the model to ignore denoising tasks at earlier time steps and focus its capacity on generation. We propose a new parameterization of the consistency function and a two-stage training procedure that prevents the truncated-time training from collapsing to a trivial solution. Experiments on CIFAR-10 and ImageNet $64\times64$ datasets show that our method achieves better one-step and two-step FIDs than the state-of-the-art consistency models such as iCT-deep, using more than 2$\times$ smaller networks. Project page: https://truncated-cm.github.io/
Abstract:Data valuation is a class of techniques for quantitatively assessing the value of data for applications like pricing in data marketplaces. Existing data valuation methods define a value for a discrete dataset. However, in many use cases, users are interested in not only the value of the dataset, but that of the distribution from which the dataset was sampled. For example, consider a buyer trying to evaluate whether to purchase data from different vendors. The buyer may observe (and compare) only a small preview sample from each vendor, to decide which vendor's data distribution is most useful to the buyer and purchase. The core question is how should we compare the values of data distributions from their samples? Under a Huber characterization of the data heterogeneity across vendors, we propose a maximum mean discrepancy (MMD)-based valuation method which enables theoretically principled and actionable policies for comparing data distributions from samples. We empirically demonstrate that our method is sample-efficient and effective in identifying valuable data distributions against several existing baselines, on multiple real-world datasets (e.g., network intrusion detection, credit card fraud detection) and downstream applications (classification, regression).
Abstract:On-device training is currently the most common approach for training machine learning (ML) models on private, distributed user data. Despite this, on-device training has several drawbacks: (1) most user devices are too small to train large models on-device, (2) on-device training is communication- and computation-intensive, and (3) on-device training can be difficult to debug and deploy. To address these problems, we propose Private Evolution-Text (PrE-Text), a method for generating differentially private (DP) synthetic textual data. First, we show that across multiple datasets, training small models (models that fit on user devices) with PrE-Text synthetic data outperforms small models trained on-device under practical privacy regimes ($\epsilon=1.29$, $\epsilon=7.58$). We achieve these results while using 9$\times$ fewer rounds, 6$\times$ less client computation per round, and 100$\times$ less communication per round. Second, finetuning large models on PrE-Text's DP synthetic data improves large language model (LLM) performance on private data across the same range of privacy budgets. Altogether, these results suggest that training on DP synthetic data can be a better option than training a model on-device on private distributed data. Code is available at https://github.com/houcharlie/PrE-Text.
Abstract:Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE. One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error. However, rectified flows still require a relatively large number of function evaluations (NFEs). In this work, we propose improved techniques for training rectified flows, allowing them to compete with knowledge distillation methods even in the low NFE setting. Our main insight is that under realistic settings, a single iteration of the Reflow algorithm for training rectified flows is sufficient to learn nearly straight trajectories; hence, the current practice of using multiple Reflow iterations is unnecessary. We thus propose techniques to improve one-round training of rectified flows, including a U-shaped timestep distribution and LPIPS-Huber premetric. With these techniques, we improve the FID of the previous 2-rectified flow by up to 72% in the 1 NFE setting on CIFAR-10. On ImageNet 64$\times$64, our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two-step settings and rivals the performance of improved consistency training (iCT) in FID. Code is available at https://github.com/sangyun884/rfpp.
Abstract:Differentially private (DP) machine learning pipelines typically involve a two-phase process: non-private pre-training on a public dataset, followed by fine-tuning on private data using DP optimization techniques. In the DP setting, it has been observed that full fine-tuning may not always yield the best test accuracy, even for in-distribution data. This paper (1) analyzes the training dynamics of DP linear probing (LP) and full fine-tuning (FT), and (2) explores the phenomenon of sequential fine-tuning, starting with linear probing and transitioning to full fine-tuning (LP-FT), and its impact on test loss. We provide theoretical insights into the convergence of DP fine-tuning within an overparameterized neural network and establish a utility curve that determines the allocation of privacy budget between linear probing and full fine-tuning. The theoretical results are supported by empirical evaluations on various benchmarks and models. The findings reveal the complex nature of DP fine-tuning methods. These results contribute to a deeper understanding of DP machine learning and highlight the importance of considering the allocation of privacy budget in the fine-tuning process.
Abstract:Long-term time series forecasting (LTSF) aims to predict future values of a time series given the past values. The current state-of-the-art (SOTA) on this problem is attained in some cases by linear-centric models, which primarily feature a linear mapping layer. However, due to their inherent simplicity, they are not able to adapt their prediction rules to periodic changes in time series patterns. To address this challenge, we propose a Mixture-of-Experts-style augmentation for linear-centric models and propose Mixture-of-Linear-Experts (MoLE). Instead of training a single model, MoLE trains multiple linear-centric models (i.e., experts) and a router model that weighs and mixes their outputs. While the entire framework is trained end-to-end, each expert learns to specialize in a specific temporal pattern, and the router model learns to compose the experts adaptively. Experiments show that MoLE reduces forecasting error of linear-centric models, including DLinear, RLinear, and RMLP, in over 78% of the datasets and settings we evaluated. By using MoLE existing linear-centric models can achieve SOTA LTSF results in 68% of the experiments that PatchTST reports and we compare to, whereas existing single-head linear-centric models achieve SOTA results in only 25% of cases. Additionally, MoLE models achieve SOTA in all settings for the newly released Weather2K datasets.
Abstract:While deep learning (DL) models are state-of-the-art in text and image domains, they have not yet consistently outperformed Gradient Boosted Decision Trees (GBDTs) on tabular Learning-To-Rank (LTR) problems. Most of the recent performance gains attained by DL models in text and image tasks have used unsupervised pretraining, which exploits orders of magnitude more unlabeled data than labeled data. To the best of our knowledge, unsupervised pretraining has not been applied to the LTR problem, which often produces vast amounts of unlabeled data. In this work, we study whether unsupervised pretraining can improve LTR performance over GBDTs and other non-pretrained models. Using simple design choices--including SimCLR-Rank, our ranking-specific modification of SimCLR (an unsupervised pretraining method for images)--we produce pretrained deep learning models that soundly outperform GBDTs (and other non-pretrained models) in the case where labeled data is vastly outnumbered by unlabeled data. We also show that pretrained models also often achieve significantly better robustness than non-pretrained models (GBDTs or DL models) in ranking outlier data.
Abstract:Data sharing between different parties has become increasingly common across industry and academia. An important class of privacy concerns that arises in data sharing scenarios regards the underlying distribution of data. For example, the total traffic volume of data from a networking company can reveal the scale of its business, which may be considered a trade secret. Unfortunately, existing privacy frameworks (e.g., differential privacy, anonymization) do not adequately address such concerns. In this paper, we propose summary statistic privacy, a framework for analyzing and protecting these summary statistic privacy concerns. We propose a class of quantization mechanisms that can be tailored to various data distributions and statistical secrets, and analyze their privacy-distortion trade-offs under our framework. We prove corresponding lower bounds on the privacy-utility tradeoff, which match the tradeoffs of the quantization mechanism under certain regimes, up to small constant factors. Finally, we demonstrate that the proposed quantization mechanisms achieve better privacy-distortion tradeoffs than alternative privacy mechanisms on real-world datasets.
Abstract:In Federated Learning (FL), accessing private client data incurs communication and privacy costs. As a result, FL deployments commonly prefinetune pretrained foundation models on a (large, possibly public) dataset that is held by the central server; they then FL-finetune the model on a private, federated dataset held by clients. Evaluating prefinetuning dataset quality reliably and privately is therefore of high importance. To this end, we propose FreD (Federated Private Fr\'echet Distance) -- a privately computed distance between a prefinetuning dataset and federated datasets. Intuitively, it privately computes and compares a Fr\'echet distance between embeddings generated by a large language model on both the central (public) dataset and the federated private client data. To make this computation privacy-preserving, we use distributed, differentially-private mean and covariance estimators. We show empirically that FreD accurately predicts the best prefinetuning dataset at minimal privacy cost. Altogether, using FreD we demonstrate a proof-of-concept for a new approach in private FL training: (1) customize a prefinetuning dataset to better match user data (2) prefinetune (3) perform FL-finetuning.