Abstract:We present two sharp empirical Bernstein inequalities for symmetric random matrices with bounded eigenvalues. By sharp, we mean that both inequalities adapt to the unknown variance in a tight manner: the deviation captured by the first-order $1/\sqrt{n}$ term asymptotically matches the matrix Bernstein inequality exactly, including constants, the latter requiring knowledge of the variance. Our first inequality holds for the sample mean of independent matrices, and our second inequality holds for a mean estimator under martingale dependence at stopping times.
Abstract:In interactive imitation learning (IL), uncertainty quantification offers a way for the learner (i.e. robot) to contend with distribution shifts encountered during deployment by actively seeking additional feedback from an expert (i.e. human) online. Prior works use mechanisms like ensemble disagreement or Monte Carlo dropout to quantify when black-box IL policies are uncertain; however, these approaches can lead to overconfident estimates when faced with deployment-time distribution shifts. Instead, we contend that we need uncertainty quantification algorithms that can leverage the expert human feedback received during deployment time to adapt the robot's uncertainty online. To tackle this, we draw upon online conformal prediction, a distribution-free method for constructing prediction intervals online given a stream of ground-truth labels. Human labels, however, are intermittent in the interactive IL setting. Thus, from the conformal prediction side, we introduce a novel uncertainty quantification algorithm called intermittent quantile tracking (IQT) that leverages a probabilistic model of intermittent labels, maintains asymptotic coverage guarantees, and empirically achieves desired coverage levels. From the interactive IL side, we develop ConformalDAgger, a new approach wherein the robot uses prediction intervals calibrated by IQT as a reliable measure of deployment-time uncertainty to actively query for more expert feedback. We compare ConformalDAgger to prior uncertainty-aware DAgger methods in scenarios where the distribution shift is (and isn't) present because of changes in the expert's policy. We find that in simulated and hardware deployments on a 7DOF robotic manipulator, ConformalDAgger detects high uncertainty when the expert shifts and increases the number of interventions compared to baselines, allowing the robot to more quickly learn the new behavior.
Abstract:To use generative question-and-answering (QA) systems for decision-making and in any critical application, these systems need to provide well-calibrated confidence scores that reflect the correctness of their answers. Existing calibration methods aim to ensure that the confidence score is on average indicative of the likelihood that the answer is correct. We argue, however, that this standard (average-case) notion of calibration is difficult to interpret for decision-making in generative QA. To address this, we generalize the standard notion of average calibration and introduce $\beta$-calibration, which ensures calibration holds across different question-and-answer groups. We then propose discretized posthoc calibration schemes for achieving $\beta$-calibration.
Abstract:We present a sequential version of the kernelized Stein discrepancy, which allows for conducting goodness-of-fit tests for unnormalized densities that are continuously monitored and adaptively stopped. That is, the sample size need not be fixed prior to data collection; the practitioner can choose whether to stop the test or continue to gather evidence at any time while controlling the false discovery rate. In stark contrast to related literature, we do not impose uniform boundedness on the Stein kernel. Instead, we exploit the potential boundedness of the Stein kernel at arbitrary point evaluations to define test martingales, that give way to the subsequent novel sequential tests. We prove the validity of the test, as well as an asymptotic lower bound for the logarithmic growth of the wealth process under the alternative. We further illustrate the empirical performance of the test with a variety of distributions, including restricted Boltzmann machines.
Abstract:Double (debiased) machine learning (DML) has seen widespread use in recent years for learning causal/structural parameters, in part due to its flexibility and adaptability to high-dimensional nuisance functions as well as its ability to avoid bias from regularization or overfitting. However, the classic double-debiased framework is only valid asymptotically for a predetermined sample size, thus lacking the flexibility of collecting more data if sharper inference is needed, or stopping data collection early if useful inferences can be made earlier than expected. This can be of particular concern in large scale experimental studies with huge financial costs or human lives at stake, as well as in observational studies where the length of confidence of intervals do not shrink to zero even with increasing sample size due to partial identifiability of a structural parameter. In this paper, we present time-uniform counterparts to the asymptotic DML results, enabling valid inference and confidence intervals for structural parameters to be constructed at any arbitrary (possibly data-dependent) stopping time. We provide conditions which are only slightly stronger than the standard DML conditions, but offer the stronger guarantee for anytime-valid inference. This facilitates the transformation of any existing DML method to provide anytime-valid guarantees with minimal modifications, making it highly adaptable and easy to use. We illustrate our procedure using two instances: a) local average treatment effect in online experiments with non-compliance, and b) partial identification of average treatment effect in observational studies with potential unmeasured confounding.
Abstract:Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any black-box prediction model and converts point predictions into set predictions that have a predefined marginal coverage guarantee. However, conformal prediction only works if we fix the underlying machine learning model in advance. A relatively unaddressed issue in conformal prediction is that of model selection and/or aggregation: for a given problem, which of the plethora of prediction methods (random forests, neural nets, regularized linear models, etc.) should we conformalize? This paper proposes a new approach towards conformal model aggregation in online settings that is based on combining the prediction sets from several algorithms by voting, where weights on the models are adapted over time based on past performance.
Abstract:In anytime-valid sequential inference, it is known that any admissible inference procedure must be based on test martingales and their composite generalization, called e-processes, which are nonnegative processes whose expectation at any arbitrary stopping time is upper-bounded by one. An e-process quantifies the accumulated evidence against a composite null hypothesis over a sequence of outcomes. This paper studies methods for combining e-processes that are computed using different information sets, i.e., filtrations, for a null hypothesis. Even though e-processes constructed on the same filtration can be combined effortlessly (e.g., by averaging), e-processes constructed on different filtrations cannot be combined as easily because their validity in a coarser filtration does not translate to validity in a finer filtration. We discuss three concrete examples of such e-processes in the literature: exchangeability tests, independence tests, and tests for evaluating and comparing forecasts with lags. Our main result establishes that these e-processes can be lifted into any finer filtration using adjusters, which are functions that allow betting on the running maximum of the accumulated wealth (thereby insuring against the loss of evidence). We also develop randomized adjusters that can improve the power of the resulting sequential inference procedure.
Abstract:We present new concentration inequalities for either martingale dependent or exchangeable random symmetric matrices under a variety of tail conditions, encompassing standard Chernoff bounds to self-normalized heavy-tailed settings. These inequalities are often randomized in a way that renders them strictly tighter than existing deterministic results in the literature, are typically expressed in the Loewner order, and are sometimes valid at arbitrary data-dependent stopping times. Along the way, we explore the theory of matrix supermartingales and maximal inequalities, potentially of independent interest.
Abstract:We consider the problem of efficient inference of the Average Treatment Effect in a sequential experiment where the policy governing the assignment of subjects to treatment or control can change over time. We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability Weighted estimator, which is semiparametric efficient, under weaker assumptions than those previously made in the literature. This central limit theorem enables efficient inference at fixed sample sizes. We then consider a sequential inference setting, deriving both asymptotic and nonasymptotic confidence sequences that are considerably tighter than previous methods. These anytime-valid methods enable inference under data-dependent stopping times (sample sizes). Additionally, we use propensity score truncation techniques from the recent off-policy estimation literature to reduce the finite sample variance of our estimator without affecting the asymptotic variance. Empirical results demonstrate that our methods yield narrower confidence sequences than those previously developed in the literature while maintaining time-uniform error control.
Abstract:We derive and study time-uniform confidence spheres - termed confidence sphere sequences (CSSs) - which contain the mean of random vectors with high probability simultaneously across all sample sizes. Inspired by the original work of Catoni and Giulini, we unify and extend their analysis to cover both the sequential setting and to handle a variety of distributional assumptions. More concretely, our results include an empirical-Bernstein CSS for bounded random vectors (resulting in a novel empirical-Bernstein confidence interval), a CSS for sub-$\psi$ random vectors, and a CSS for heavy-tailed random vectors based on a sequentially valid Catoni-Giulini estimator. Finally, we provide a version of our empirical-Bernstein CSS that is robust to contamination by Huber noise.