Abstract:In this paper, we present a novel embedded feature selection method based on a Multi-layer Perceptron (MLP) network and generalize it for group-feature or sensor selection problems, which can control the level of redundancy among the selected features or groups. Additionally, we have generalized the group lasso penalty for feature selection to encompass a mechanism for selecting valuable group features while simultaneously maintaining a control over redundancy. We establish the monotonicity and convergence of the proposed algorithm, with a smoothed version of the penalty terms, under suitable assumptions. Experimental results on several benchmark datasets demonstrate the promising performance of the proposed methodology for both feature selection and group feature selection over some state-of-the-art methods.
Abstract:Classification of high-dimensional low sample size (HDLSS) data poses a challenge in a variety of real-world situations, such as gene expression studies, cancer research, and medical imaging. This article presents the development and analysis of some classifiers that are specifically designed for HDLSS data. These classifiers are free of tuning parameters and are robust, in the sense that they are devoid of any moment conditions of the underlying data distributions. It is shown that they yield perfect classification in the HDLSS asymptotic regime, under some fairly general conditions. The comparative performance of the proposed classifiers is also investigated. Our theoretical results are supported by extensive simulation studies and real data analysis, which demonstrate promising advantages of the proposed classification techniques over several widely recognized methods.