Shammie
Abstract:We introduce the fundamental ideas and challenges of Predictable AI, a nascent research area that explores the ways in which we can anticipate key indicators of present and future AI ecosystems. We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems, and thus should be prioritised over performance. While distinctive from other areas of technical and non-technical AI research, the questions, hypotheses and challenges relevant to Predictable AI were yet to be clearly described. This paper aims to elucidate them, calls for identifying paths towards AI predictability and outlines the potential impact of this emergent field.
Abstract:Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
Abstract:The progress of some AI paradigms such as deep learning is said to be linked to an exponential growth in the number of parameters. There are many studies corroborating these trends, but does this translate into an exponential increase in energy consumption? In order to answer this question we focus on inference costs rather than training costs, as the former account for most of the computing effort, solely because of the multiplicative factors. Also, apart from algorithmic innovations, we account for more specific and powerful hardware (leading to higher FLOPS) that is usually accompanied with important energy efficiency optimisations. We also move the focus from the first implementation of a breakthrough paper towards the consolidated version of the techniques one or two year later. Under this distinctive and comprehensive perspective, we study relevant models in the areas of computer vision and natural language processing: for a sustained increase in performance we see a much softer growth in energy consumption than previously anticipated. The only caveat is, yet again, the multiplicative factor, as future AI increases penetration and becomes more pervasive.
Abstract:The causes underlying unfair decision making are complex, being internalised in different ways by decision makers, other actors dealing with data and models, and ultimately by the individuals being affected by these decisions. One frequent manifestation of all these latent causes arises in the form of missing values: protected groups are more reluctant to give information that could be used against them, delicate information for some groups can be erased by human operators, or data acquisition may simply be less complete and systematic for minority groups. As a result, missing values and bias in data are two phenomena that are tightly coupled. However, most recent techniques, libraries and experimental results dealing with fairness in machine learning have simply ignored missing data. In this paper, we claim that fairness research should not miss the opportunity to deal properly with missing data. To support this claim, (1) we analyse the sources of missing data and bias, and we map the common causes, (2) we find that rows containing missing values are usually fairer than the rest, which should not be treated as the uncomfortable ugly data that different techniques and libraries get rid of at the first occasion, and (3) we study the trade-off between performance and fairness when the rows with missing values are used (either because the technique deals with them directly or by imputation methods). We end the paper with a series of recommended procedures about what to do with missing data when aiming for fair decision making.
Abstract:Item response theory (IRT) can be applied to the analysis of the evaluation of results from AI benchmarks. The two-parameter IRT model provides two indicators (difficulty and discrimination) on the side of the item (or AI problem) while only one indicator (ability) on the side of the respondent (or AI agent). In this paper we analyse how to make this set of indicators dual, by adding a fourth indicator, generality, on the side of the respondent. Generality is meant to be dual to discrimination, and it is based on difficulty. Namely, generality is defined as a new metric that evaluates whether an agent is consistently good at easy problems and bad at difficult ones. With the addition of generality, we see that this set of four key indicators can give us more insight on the results of AI benchmarks. In particular, we explore two popular benchmarks in AI, the Arcade Learning Environment (Atari 2600 games) and the General Video Game AI competition. We provide some guidelines to estimate and interpret these indicators for other AI benchmarks and competitions.
Abstract:Given one or two examples, humans are good at understanding how to solve a problem independently of its domain, because they are able to detect what the problem is and to choose the appropriate background knowledge according to the context. For instance, presented with the string "8/17/2017" to be transformed to "17th of August of 2017", humans will process this in two steps: (1) they recognise that it is a date and (2) they map the date to the 17th of August of 2017. Inductive Programming (IP) aims at learning declarative (functional or logic) programs from examples. Two key advantages of IP are the use of background knowledge and the ability to synthesise programs from a few input/output examples (as humans do). In this paper we propose to use IP as a means for automating repetitive data manipulation tasks, frequently presented during the process of {\em data wrangling} in many data manipulation problems. Here we show that with the use of general-purpose declarative (programming) languages jointly with generic IP systems and the definition of domain-specific knowledge, many specific data wrangling problems from different application domains can be automatically solved from very few examples. We also propose an integrated benchmark for data wrangling, which we share publicly for the community.
Abstract:This paper presents a multidisciplinary task approach for assessing the impact of artificial intelligence on the future of work. We provide definitions of a task from two main perspectives: socio-economic and computational. We propose to explore ways in which we can integrate or map these perspectives, and link them with the skills or capabilities required by them, for humans and AI systems. Finally, we argue that in order to understand the dynamics of tasks, we have to explore the relevance of autonomy and generality of AI systems for the automation or alteration of the workplace.
Abstract:We analyze and reframe AI progress. In addition to the prevailing metrics of performance, we highlight the usually neglected costs paid in the development and deployment of a system, including: data, expert knowledge, human oversight, software resources, computing cycles, hardware and network facilities, development time, etc. These costs are paid throughout the life cycle of an AI system, fall differentially on different individuals, and vary in magnitude depending on the replicability and generality of the AI solution. The multidimensional performance and cost space can be collapsed to a single utility metric for a user with transitive and complete preferences. Even absent a single utility function, AI advances can be generically assessed by whether they expand the Pareto (optimal) surface. We explore a subset of these neglected dimensions using the two case studies of Alpha* and ALE. This broadened conception of progress in AI should lead to novel ways of measuring success in AI, and can help set milestones for future progress.
Abstract:The application of cognitive mechanisms to support knowledge acquisition is, from our point of view, crucial for making the resulting models coherent, efficient, credible, easy to use and understandable. In particular, there are two characteristic features of intelligence that are essential for knowledge development: forgetting and consolidation. Both plays an important role in knowledge bases and learning systems to avoid possible information overflow and redundancy, and in order to preserve and strengthen important or frequently used rules and remove (or forget) useless ones. We present an incremental, long-life view of knowledge acquisition which tries to improve task after task by determining what to keep, what to consolidate and what to forget, overcoming The Stability-Plasticity dilemma. In order to do that, we rate rules by introducing several metrics through the first adaptation, to our knowledge, of the Minimum Message Length (MML) principle to a coverage graph, a hierarchical assessment structure which treats evidence and rules in a unified way. The metrics are not only used to forget some of the worst rules, but also to set a consolidation process to promote those selected rules to the knowledge base, which is also mirrored by a demotion system. We evaluate the framework with a series of tasks in a chess rule learning domain.
Abstract:In this paper, we push forward the idea of machine learning systems whose operators can be modified and fine-tuned for each problem. This allows us to propose a learning paradigm where users can write (or adapt) their operators, according to the problem, data representation and the way the information should be navigated. To achieve this goal, data instances, background knowledge, rules, programs and operators are all written in the same functional language, Erlang. Since changing operators affect how the search space needs to be explored, heuristics are learnt as a result of a decision process based on reinforcement learning where each action is defined as a choice of operator and rule. As a result, the architecture can be seen as a 'system for writing machine learning systems' or to explore new operators where the policy reuse (as a kind of transfer learning) is allowed. States and actions are represented in a Q matrix which is actually a table, from which a supervised model is learnt. This makes it possible to have a more flexible mapping between old and new problems, since we work with an abstraction of rules and actions. We include some examples sharing reuse and the application of the system gErl to IQ problems. In order to evaluate gErl, we will test it against some structured problems: a selection of IQ test tasks and some experiments on some structured prediction problems (list patterns).