Abstract:We present an online method for embodied agents to learn and accomplish diverse user goals. While offline methods like RLHF can represent various goals but require large datasets, our approach achieves similar flexibility with online efficiency. We extract natural language goal representations from conversations with Large Language Models (LLMs). We prompt an LLM to role play as a human with different goals and use the corresponding likelihoods to run Bayesian inference over potential goals. As a result, our method can represent uncertainty over complex goals based on unrestricted dialog. We evaluate our method in grocery shopping and home robot assistance domains using a text-based interface and AI2Thor simulation respectively. Results show our method outperforms ablation baselines that lack either explicit goal representation or probabilistic inference.
Abstract:Large language models (LLMs) can often be made to behave in undesirable ways that they are explicitly fine-tuned not to. For example, the LLM red-teaming literature has produced a wide variety of `jailbreaking' techniques to elicit harmful text from models that were fine-tuned to be harmless. Recent work on red-teaming, model editing, and interpretability suggests that this challenge stems from how (adversarial) fine-tuning largely serves to suppress rather than remove undesirable capabilities from LLMs. Prior work has introduced latent adversarial training (LAT) as a way to improve robustness to broad classes of failures. These prior works have considered untargeted latent space attacks where the adversary perturbs latent activations to maximize loss on examples of desirable behavior. Untargeted LAT can provide a generic type of robustness but does not leverage information about specific failure modes. Here, we experiment with targeted LAT where the adversary seeks to minimize loss on a specific competing task. We find that it can augment a wide variety of state-of-the-art methods. First, we use targeted LAT to improve robustness to jailbreaks, outperforming a strong R2D2 baseline with orders of magnitude less compute. Second, we use it to more effectively remove backdoors with no knowledge of the trigger. Finally, we use it to more effectively unlearn knowledge for specific undesirable tasks in a way that is also more robust to re-learning. Overall, our results suggest that targeted LAT can be an effective tool for defending against harmful behaviors from LLMs.
Abstract:Interpretability techniques are valuable for helping humans understand and oversee AI systems. The SaTML 2024 CNN Interpretability Competition solicited novel methods for studying convolutional neural networks (CNNs) at the ImageNet scale. The objective of the competition was to help human crowd-workers identify trojans in CNNs. This report showcases the methods and results of four featured competition entries. It remains challenging to help humans reliably diagnose trojans via interpretability tools. However, the competition's entries have contributed new techniques and set a new record on the benchmark from Casper et al., 2023.
Abstract:AI systems sometimes exhibit harmful unintended behaviors post-deployment. This is often despite extensive diagnostics and debugging by developers. Minimizing risks from models is challenging because the attack surface is so large. It is not tractable to exhaustively search for inputs that may cause a model to fail. Red-teaming and adversarial training (AT) are commonly used to make AI systems more robust. However, they have not been sufficient to avoid many real-world failure modes that differ from the ones adversarially trained on. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without generating inputs that elicit them. LAT leverages the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction. We use LAT to remove trojans and defend against held-out classes of adversarial attacks. We show in image classification, text classification, and text generation tasks that LAT usually improves both robustness and performance on clean data relative to AT. This suggests that LAT can be a promising tool for defending against failure modes that are not explicitly identified by developers.
Abstract:Machine unlearning can be useful for removing harmful capabilities and memorized text from large language models (LLMs), but there are not yet standardized methods for rigorously evaluating it. In this paper, we first survey techniques and limitations of existing unlearning evaluations. Second, we apply a comprehensive set of tests for the robustness and competitiveness of unlearning in the "Who's Harry Potter" (WHP) model from Eldan and Russinovich (2023). While WHP's unlearning generalizes well when evaluated with the "Familiarity" metric from Eldan and Russinovich, we find i) higher-than-baseline amounts of knowledge can reliably be extracted, ii) WHP performs on par with the original model on Harry Potter Q&A tasks, iii) it represents latent knowledge comparably to the original model, and iv) there is collateral unlearning in related domains. Overall, our results highlight the importance of comprehensive unlearning evaluation that avoids ad-hoc metrics.
Abstract:External audits of AI systems are increasingly recognized as a key mechanism for AI governance. The effectiveness of an audit, however, depends on the degree of system access granted to auditors. Recent audits of state-of-the-art AI systems have primarily relied on black-box access, in which auditors can only query the system and observe its outputs. However, white-box access to the system's inner workings (e.g., weights, activations, gradients) allows an auditor to perform stronger attacks, more thoroughly interpret models, and conduct fine-tuning. Meanwhile, outside-the-box access to its training and deployment information (e.g., methodology, code, documentation, hyperparameters, data, deployment details, findings from internal evaluations) allows for auditors to scrutinize the development process and design more targeted evaluations. In this paper, we examine the limitations of black-box audits and the advantages of white- and outside-the-box audits. We also discuss technical, physical, and legal safeguards for performing these audits with minimal security risks. Given that different forms of access can lead to very different levels of evaluation, we conclude that (1) transparency regarding the access and methods used by auditors is necessary to properly interpret audit results, and (2) white- and outside-the-box access allow for substantially more scrutiny than black-box access alone.
Abstract:In practice, preference learning from human feedback depends on incomplete data with hidden context. Hidden context refers to data that affects the feedback received, but which is not represented in the data used to train a preference model. This captures common issues of data collection, such as having human annotators with varied preferences, cognitive processes that result in seemingly irrational behavior, and combining data labeled according to different criteria. We prove that standard applications of preference learning, including reinforcement learning from human feedback (RLHF), implicitly aggregate over hidden contexts according to a well-known voting rule called Borda count. We show this can produce counter-intuitive results that are very different from other methods which implicitly aggregate via expected utility. Furthermore, our analysis formalizes the way that preference learning from users with diverse values tacitly implements a social choice function. A key implication of this result is that annotators have an incentive to misreport their preferences in order to influence the learned model, leading to vulnerabilities in the deployment of RLHF. As a step towards mitigating these problems, we introduce a class of methods called distributional preference learning (DPL). DPL methods estimate a distribution of possible score values for each alternative in order to better account for hidden context. Experimental results indicate that applying DPL to RLHF for LLM chatbots identifies hidden context in the data and significantly reduces subsequent jailbreak vulnerability. Our code and data are available at https://github.com/cassidylaidlaw/hidden-context
Abstract:Neural language models (LMs) can be used to evaluate the truth of factual statements in two ways: they can be either queried for statement probabilities, or probed for internal representations of truthfulness. Past work has found that these two procedures sometimes disagree, and that probes tend to be more accurate than LM outputs. This has led some researchers to conclude that LMs "lie" or otherwise encode non-cooperative communicative intents. Is this an accurate description of today's LMs, or can query-probe disagreement arise in other ways? We identify three different classes of disagreement, which we term confabulation, deception, and heterogeneity. In many cases, the superiority of probes is simply attributable to better calibration on uncertain answers rather than a greater fraction of correct, high-confidence answers. In some cases, queries and probes perform better on different subsets of inputs, and accuracy can further be improved by ensembling the two. Code is available at github.com/lingo-mit/lm-truthfulness.
Abstract:Reinforcement learning from human feedback (RLHF) is a technique for training AI systems to align with human goals. RLHF has emerged as the central method used to finetune state-of-the-art large language models (LLMs). Despite this popularity, there has been relatively little public work systematizing its flaws. In this paper, we (1) survey open problems and fundamental limitations of RLHF and related methods; (2) overview techniques to understand, improve, and complement RLHF in practice; and (3) propose auditing and disclosure standards to improve societal oversight of RLHF systems. Our work emphasizes the limitations of RLHF and highlights the importance of a multi-faceted approach to the development of safer AI systems.
Abstract:Modern diffusion models have set the state-of-the-art in AI image generation. Their success is due, in part, to training on Internet-scale data which often includes copyrighted work. This prompts questions about the extent to which these models learn from, imitate, or copy the work of human artists. This work suggests that tying copyright liability to the capabilities of the model may be useful given the evolving ecosystem of generative models. Specifically, much of the legal analysis of copyright and generative systems focuses on the use of protected data for training. As a result, the connections between data, training, and the system are often obscured. In our approach, we consider simple image classification techniques to measure a model's ability to imitate specific artists. Specifically, we use Contrastive Language-Image Pretrained (CLIP) encoders to classify images in a zero-shot fashion. Our process first prompts a model to imitate a specific artist. Then, we test whether CLIP can be used to reclassify the artist (or the artist's work) from the imitation. If these tests match the imitation back to the original artist, this suggests the model can imitate that artist's expression. Our approach is simple and quantitative. Furthermore, it uses standard techniques and does not require additional training. We demonstrate our approach with an audit of Stable Diffusion's capacity to imitate 70 professional digital artists with copyrighted work online. When Stable Diffusion is prompted to imitate an artist from this set, we find that the artist can be identified from the imitation with an average accuracy of 81.0%. Finally, we also show that a sample of the artist's work can be matched to these imitation images with a high degree of statistical reliability. Overall, these results suggest that Stable Diffusion is broadly successful at imitating individual human artists.