Abstract:Recently, the diffusion-based generative paradigm has achieved impressive general image generation capabilities with text prompts due to its accurate distribution modeling and stable training process. However, generating diverse remote sensing (RS) images that are tremendously different from general images in terms of scale and perspective remains a formidable challenge due to the lack of a comprehensive remote sensing image generation dataset with various modalities, ground sample distances (GSD), and scenes. In this paper, we propose a Multi-modal, Multi-GSD, Multi-scene Remote Sensing (MMM-RS) dataset and benchmark for text-to-image generation in diverse remote sensing scenarios. Specifically, we first collect nine publicly available RS datasets and conduct standardization for all samples. To bridge RS images to textual semantic information, we utilize a large-scale pretrained vision-language model to automatically output text prompts and perform hand-crafted rectification, resulting in information-rich text-image pairs (including multi-modal images). In particular, we design some methods to obtain the images with different GSD and various environments (e.g., low-light, foggy) in a single sample. With extensive manual screening and refining annotations, we ultimately obtain a MMM-RS dataset that comprises approximately 2.1 million text-image pairs. Extensive experimental results verify that our proposed MMM-RS dataset allows off-the-shelf diffusion models to generate diverse RS images across various modalities, scenes, weather conditions, and GSD. The dataset is available at https://github.com/ljl5261/MMM-RS.
Abstract:Camouflaged object detection has attracted a lot of attention in computer vision. The main challenge lies in the high degree of similarity between camouflaged objects and their surroundings in the spatial domain, making identification difficult. Existing methods attempt to reduce the impact of pixel similarity by maximizing the distinguishing ability of spatial features with complicated design, but often ignore the sensitivity and locality of features in the spatial domain, leading to sub-optimal results. In this paper, we propose a new approach to address this issue by jointly exploring the representation in the frequency and spatial domains, introducing the Frequency-Spatial Entanglement Learning (FSEL) method. This method consists of a series of well-designed Entanglement Transformer Blocks (ETB) for representation learning, a Joint Domain Perception Module for semantic enhancement, and a Dual-domain Reverse Parser for feature integration in the frequency and spatial domains. Specifically, the ETB utilizes frequency self-attention to effectively characterize the relationship between different frequency bands, while the entanglement feed-forward network facilitates information interaction between features of different domains through entanglement learning. Our extensive experiments demonstrate the superiority of our FSEL over 21 state-of-the-art methods, through comprehensive quantitative and qualitative comparisons in three widely-used datasets. The source code is available at: https://github.com/CSYSI/FSEL.
Abstract:While existing semi-supervised object detection (SSOD) methods perform well in general scenes, they encounter challenges in handling oriented objects in aerial images. We experimentally find three gaps between general and oriented object detection in semi-supervised learning: 1) Sampling inconsistency: the common center sampling is not suitable for oriented objects with larger aspect ratios when selecting positive labels from labeled data. 2) Assignment inconsistency: balancing the precision and localization quality of oriented pseudo-boxes poses greater challenges which introduces more noise when selecting positive labels from unlabeled data. 3) Confidence inconsistency: there exists more mismatch between the predicted classification and localization qualities when considering oriented objects, affecting the selection of pseudo-labels. Therefore, we propose a Multi-clue Consistency Learning (MCL) framework to bridge gaps between general and oriented objects in semi-supervised detection. Specifically, considering various shapes of rotated objects, the Gaussian Center Assignment is specially designed to select the pixel-level positive labels from labeled data. We then introduce the Scale-aware Label Assignment to select pixel-level pseudo-labels instead of unreliable pseudo-boxes, which is a divide-and-rule strategy suited for objects with various scales. The Consistent Confidence Soft Label is adopted to further boost the detector by maintaining the alignment of the predicted results. Comprehensive experiments on DOTA-v1.5 and DOTA-v1.0 benchmarks demonstrate that our proposed MCL can achieve state-of-the-art performance in the semi-supervised oriented object detection task.
Abstract:Few-shot continual learning (FSCL) has attracted intensive attention and achieved some advances in recent years, but now it is difficult to again make a big stride in accuracy due to the limitation of only few-shot incremental samples. Inspired by distinctive human cognition ability in life learning, in this work, we propose a novel Big-model driven Few-shot Continual Learning (B-FSCL) framework to gradually evolve the model under the traction of the world's big-models (like human accumulative knowledge). Specifically, we perform the big-model driven transfer learning to leverage the powerful encoding capability of these existing big-models, which can adapt the continual model to a few of newly added samples while avoiding the over-fitting problem. Considering that the big-model and the continual model may have different perceived results for the identical images, we introduce an instance-level adaptive decision mechanism to provide the high-level flexibility cognitive support adjusted to varying samples. In turn, the adaptive decision can be further adopted to optimize the parameters of the continual model, performing the adaptive distillation of big-model's knowledge information. Experimental results of our proposed B-FSCL on three popular datasets (including CIFAR100, minilmageNet and CUB200) completely surpass all state-of-the-art FSCL methods.
Abstract:Frame reconstruction (current or future frame) based on Auto-Encoder (AE) is a popular method for video anomaly detection. With models trained on the normal data, the reconstruction errors of anomalous scenes are usually much larger than those of normal ones. Previous methods introduced the memory bank into AE, for encoding diverse normal patterns across the training videos. However, they are memory-consuming and cannot cope with unseen new scenarios in the testing data. In this work, we propose a dynamic prototype unit (DPU) to encode the normal dynamics as prototypes in real time, free from extra memory cost. In addition, we introduce meta-learning to our DPU to form a novel few-shot normalcy learner, namely Meta-Prototype Unit (MPU). It enables the fast adaption capability on new scenes by only consuming a few iterations of update. Extensive experiments are conducted on various benchmarks. The superior performance over the state-of-the-art demonstrates the effectiveness of our method.
Abstract:Video anomaly detection (VAD) is currently a challenging task due to the complexity of anomaly as well as the lack of labor-intensive temporal annotations. In this paper, we propose an end-to-end Global Information Guided (GIG) anomaly detection framework for anomaly detection using the video-level annotations (i.e., weak labels). We propose to first mine the global pattern cues by leveraging the weak labels in a GIG module. Then we build a spatial reasoning module to measure the relevance between vectors in spatial domain with the global cue vectors, and select the most related feature vectors for temporal anomaly detection. The experimental results on the CityScene challenge demonstrate the effectiveness of our model.
Abstract:Accurate traffic prediction is crucial to the guidance and management of urban traffics. However, most of the existing traffic prediction models do not consider the computational burden and memory space when they capture spatial-temporal dependence among traffic data. In this work, we propose a factorized Spatial-Temporal Tensor Graph Convolutional Network to deal with traffic speed prediction. Traffic networks are modeled and unified into a graph that integrates spatial and temporal information simultaneously. We further extend graph convolution into tensor space and propose a tensor graph convolution network to extract more discriminating features from spatial-temporal graph data. To reduce the computational burden, we take Tucker tensor decomposition and derive factorized a tensor convolution, which performs separate filtering in small-scale space, time, and feature modes. Besides, we can benefit from noise suppression of traffic data when discarding those trivial components in the process of tensor decomposition. Extensive experiments on two real-world traffic speed datasets demonstrate our method is more effective than those traditional traffic prediction methods, and meantime achieves state-of-the-art performance.
Abstract:Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision, such as image/video classification. The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr. However, these samples often tend to contain incorrect labels (i.e. noisy labels), which will significantly degrade the network performance. In this paper, the attention-aware noisy label learning approach ($A^2NL$) is proposed to improve the discriminative capability of the network trained on datasets with potential label noise. Specifically, a Noise-Attention model, which contains multiple noise-specific units, is designed to better capture noisy information. Each unit is expected to learn a specific noisy distribution for a subset of images so that different disturbances are more precisely modeled. Furthermore, a recursive learning process is introduced to strengthen the learning ability of the attention network by taking advantage of the learned high-level knowledge. To fully evaluate the proposed method, we conduct experiments from two aspects: manually flipped label noise on large-scale image classification datasets, including CIFAR-10, SVHN; and real-world label noise on an online crawled clothing dataset with multiple attributes. The superior results over state-of-the-art methods validate the effectiveness of our proposed approach.
Abstract:Point clouds are unstructured and unordered in the embedded 3D space. In order to produce consistent responses under different permutation layouts, most existing methods aggregate local spatial points through maximum or summation operation. But such an aggregation essentially belongs to the isotropic filtering on all operated points therein, which tends to lose the information of geometric structures. In this paper, we propose a spatial transformer point convolution (STPC) method to achieve anisotropic convolution filtering on point clouds. To capture and represent implicit geometric structures, we specifically introduce spatial direction dictionary to learn those latent geometric components. To better encode unordered neighbor points, we design sparse deformer to transform them into the canonical ordered dictionary space by using direction dictionary learning. In the transformed space, the standard image-like convolution can be leveraged to generate anisotropic filtering, which is more robust to express those finer variances of local regions. Dictionary learning and encoding processes are encapsulated into a network module and jointly learnt in an end-to-end manner. Extensive experiments on several public datasets (including S3DIS, Semantic3D, SemanticKITTI) demonstrate the effectiveness of our proposed method in point clouds semantic segmentation task.
Abstract:Video anomaly detection under video-level labels is currently a challenging task. Previous works have made progresses on discriminating whether a video sequencecontains anomalies. However, most of them fail to accurately localize the anomalous events within videos in the temporal domain. In this paper, we propose a Weakly Supervised Anomaly Localization (WSAL) method focusing on temporally localizing anomalous segments within anomalous videos. Inspired by the appearance difference in anomalous videos, the evolution of adjacent temporal segments is evaluated for the localization of anomalous segments. To this end, a high-order context encoding model is proposed to not only extract semantic representations but also measure the dynamic variations so that the temporal context could be effectively utilized. In addition, in order to fully utilize the spatial context information, the immediate semantics are directly derived from the segment representations. The dynamic variations as well as the immediate semantics, are efficiently aggregated to obtain the final anomaly scores. An enhancement strategy is further proposed to deal with noise interference and the absence of localization guidance in anomaly detection. Moreover, to facilitate the diversity requirement for anomaly detection benchmarks, we also collect a new traffic anomaly (TAD) dataset which specifies in the traffic conditions, differing greatly from the current popular anomaly detection evaluation benchmarks.Extensive experiments are conducted to verify the effectiveness of different components, and our proposed method achieves new state-of-the-art performance on the UCF-Crime and TAD datasets.