Abstract:Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists' workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a - often very large - number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need of external training data. Patches cropped from a WSI with inaccurate labels are processed jointly with a MIL framework, and a deep-attention mechanism is leveraged to discriminate mislabeled instances, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming the state-of-the-art alternatives, even while learning from a single slide. These results demonstrate the LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets.
Abstract:Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision, such as image/video classification. The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr. However, these samples often tend to contain incorrect labels (i.e. noisy labels), which will significantly degrade the network performance. In this paper, the attention-aware noisy label learning approach ($A^2NL$) is proposed to improve the discriminative capability of the network trained on datasets with potential label noise. Specifically, a Noise-Attention model, which contains multiple noise-specific units, is designed to better capture noisy information. Each unit is expected to learn a specific noisy distribution for a subset of images so that different disturbances are more precisely modeled. Furthermore, a recursive learning process is introduced to strengthen the learning ability of the attention network by taking advantage of the learned high-level knowledge. To fully evaluate the proposed method, we conduct experiments from two aspects: manually flipped label noise on large-scale image classification datasets, including CIFAR-10, SVHN; and real-world label noise on an online crawled clothing dataset with multiple attributes. The superior results over state-of-the-art methods validate the effectiveness of our proposed approach.
Abstract:Deep hashing has shown promising results in image retrieval and recognition. Despite its success, most existing deep hashing approaches are rather similar: either multi-layer perceptron or CNN is applied to extract image feature, followed by different binarization activation functions such as sigmoid, tanh or autoencoder to generate binary code. In this work, we introduce a novel decision-making approach for deep supervised hashing. We formulate the hashing problem as travelling across the vertices in the binary code space, and learn a deep Q-network with a novel label embedding reward defined by Bose-Chaudhuri-Hocquenghem (BCH) codes to explore the best path. Extensive experiments and analysis on the CIFAR-10 and NUS-WIDE dataset show that our approach outperforms state-of-the-art supervised hashing methods under various code lengths.