Abstract:As a fundamental operation in modern machine vision models, feature upsampling has been widely used and investigated in the literatures. An ideal upsampling operation should be lightweight, with low computational complexity. That is, it can not only improve the overall performance but also not affect the model complexity. Content-aware Reassembly of Features (CARAFE) is a well-designed learnable operation to achieve feature upsampling. Albeit encouraging performance achieved, this method requires generating large-scale kernels, which brings a mass of extra redundant parameters, and inherently has limited scalability. To this end, we propose a lightweight upsampling operation, termed Dynamic Lightweight Upsampling (DLU) in this paper. In particular, it first constructs a small-scale source kernel space, and then samples the large-scale kernels from the kernel space by introducing learnable guidance offsets, hence avoiding introducing a large collection of trainable parameters in upsampling. Experiments on several mainstream vision tasks show that our DLU achieves comparable and even better performance to the original CARAFE, but with much lower complexity, e.g., DLU requires 91% fewer parameters and at least 63% fewer FLOPs (Floating Point Operations) than CARAFE in the case of 16x upsampling, but outperforms the CARAFE by 0.3% mAP in object detection. Code is available at https://github.com/Fu0511/Dynamic-Lightweight-Upsampling.
Abstract:Deep learning-based positron emission tomography (PET) image denoising offers the potential to reduce radiation exposure and scanning time by transforming low-count images into high-count equivalents. However, existing methods typically blur crucial details, leading to inaccurate lesion quantification. This paper proposes a lesion-perceived and quantification-consistent modulation (LpQcM) strategy for enhanced PET image denoising, via employing downstream lesion quantification analysis as auxiliary tools. The LpQcM is a plug-and-play design adaptable to a wide range of model architectures, modulating the sampling and optimization procedures of model training without adding any computational burden to the inference phase. Specifically, the LpQcM consists of two components, the lesion-perceived modulation (LpM) and the multiscale quantification-consistent modulation (QcM). The LpM enhances lesion contrast and visibility by allocating higher sampling weights and stricter loss criteria to lesion-present samples determined by an auxiliary segmentation network than lesion-absent ones. The QcM further emphasizes accuracy of quantification for both the mean and maximum standardized uptake value (SUVmean and SUVmax) across multiscale sub-regions throughout the entire image, thereby enhancing the overall image quality. Experiments conducted on large PET datasets from multiple centers and vendors, and varying noise levels demonstrated the LpQcM efficacy across various denoising frameworks. Compared to frameworks without LpQcM, the integration of LpQcM reduces the lesion SUVmean bias by 2.92% on average and increases the peak signal-to-noise ratio (PSNR) by 0.34 on average, for denoising images of extremely low-count levels below 10%.
Abstract:Reranking plays a crucial role in modern multi-stage recommender systems by rearranging the initial ranking list to model interplay between items. Considering the inherent challenges of reranking such as combinatorial searching space, some previous studies have adopted the evaluator-generator paradigm, with a generator producing feasible sequences and a evaluator selecting the best one based on estimated listwise utility. Inspired by the remarkable success of diffusion generative models, this paper explores the potential of diffusion models for generating high-quality sequences in reranking. However, we argue that it is nontrivial to take diffusion models as the generator in the context of recommendation. Firstly, diffusion models primarily operate in continuous data space, differing from the discrete data space of item permutations. Secondly, the recommendation task is different from conventional generation tasks as the purpose of recommender systems is to fulfill user interests. Lastly, real-life recommender systems require efficiency, posing challenges for the inference of diffusion models. To overcome these challenges, we propose a novel Discrete Conditional Diffusion Reranking (DCDR) framework for recommendation. DCDR extends traditional diffusion models by introducing a discrete forward process with tractable posteriors, which adds noise to item sequences through step-wise discrete operations (e.g., swapping). Additionally, DCDR incorporates a conditional reverse process that generates item sequences conditioned on expected user responses. Extensive offline experiments conducted on public datasets demonstrate that DCDR outperforms state-of-the-art reranking methods. Furthermore, DCDR has been deployed in a real-world video app with over 300 million daily active users, significantly enhancing online recommendation quality.
Abstract:In the era of information explosion, numerous items emerge every day, especially in feed scenarios. Due to the limited system display slots and user browsing attention, various recommendation systems are designed not only to satisfy users' personalized information needs but also to allocate items' exposure. However, recent recommendation studies mainly focus on modeling user preferences to present satisfying results and maximize user interactions, while paying little attention to developing item-side fair exposure mechanisms for rational information delivery. This may lead to serious resource allocation problems on the item side, such as the Snowball Effect. Furthermore, unfair exposure mechanisms may hurt recommendation performance. In this paper, we call for a shift of attention from modeling user preferences to developing fair exposure mechanisms for items. We first conduct empirical analyses of feed scenarios to explore exposure problems between items with distinct uploaded times. This points out that unfair exposure caused by the time factor may be the major cause of the Snowball Effect. Then, we propose to explicitly model item-level customized timeliness distribution, Global Residual Value (GRV), for fair resource allocation. This GRV module is introduced into recommendations with the designed Timeliness-aware Fair Recommendation Framework (TaFR). Extensive experiments on two datasets demonstrate that TaFR achieves consistent improvements with various backbone recommendation models. By modeling item-side customized Global Residual Value, we achieve a fairer distribution of resources and, at the same time, improve recommendation performance.
Abstract:Offline reinforcement learning (RL), a technology that offline learns a policy from logged data without the need to interact with online environments, has become a favorable choice in decision-making processes like interactive recommendation. Offline RL faces the value overestimation problem. To address it, existing methods employ conservatism, e.g., by constraining the learned policy to be close to behavior policies or punishing the rarely visited state-action pairs. However, when applying such offline RL to recommendation, it will cause a severe Matthew effect, i.e., the rich get richer and the poor get poorer, by promoting popular items or categories while suppressing the less popular ones. It is a notorious issue that needs to be addressed in practical recommender systems. In this paper, we aim to alleviate the Matthew effect in offline RL-based recommendation. Through theoretical analyses, we find that the conservatism of existing methods fails in pursuing users' long-term satisfaction. It inspires us to add a penalty term to relax the pessimism on states with high entropy of the logging policy and indirectly penalizes actions leading to less diverse states. This leads to the main technical contribution of the work: Debiased model-based Offline RL (DORL) method. Experiments show that DORL not only captures user interests well but also alleviates the Matthew effect. The implementation is available via https://github.com/chongminggao/DORL-codes.
Abstract:An accurate prediction of watch time has been of vital importance to enhance user engagement in video recommender systems. To achieve this, there are four properties that a watch time prediction framework should satisfy: first, despite its continuous value, watch time is also an ordinal variable and the relative ordering between its values reflects the differences in user preferences. Therefore the ordinal relations should be reflected in watch time predictions. Second, the conditional dependence between the video-watching behaviors should be captured in the model. For instance, one has to watch half of the video before he/she finishes watching the whole video. Third, modeling watch time with a point estimation ignores the fact that models might give results with high uncertainty and this could cause bad cases in recommender systems. Therefore the framework should be aware of prediction uncertainty. Forth, the real-life recommender systems suffer from severe bias amplifications thus an estimation without bias amplification is expected. Therefore we propose TPM for watch time prediction. Specifically, the ordinal ranks of watch time are introduced into TPM and the problem is decomposed into a series of conditional dependent classification tasks which are organized into a tree structure. The expectation of watch time can be generated by traversing the tree and the variance of watch time predictions is explicitly introduced into the objective function as a measurement for uncertainty. Moreover, we illustrate that backdoor adjustment can be seamlessly incorporated into TPM, which alleviates bias amplifications. Extensive offline evaluations have been conducted in public datasets and TPM have been deployed in a real-world video app Kuaishou with over 300 million DAUs. The results indicate that TPM outperforms state-of-the-art approaches and indeed improves video consumption significantly.
Abstract:By incorporating additional contextual information, deep biasing methods have emerged as a promising solution for speech recognition of personalized words. However, for real-world voice assistants, always biasing on such personalized words with high prediction scores can significantly degrade the performance of recognizing common words. To address this issue, we propose an adaptive contextual biasing method based on Context-Aware Transformer Transducer (CATT) that utilizes the biased encoder and predictor embeddings to perform streaming prediction of contextual phrase occurrences. Such prediction is then used to dynamically switch the bias list on and off, enabling the model to adapt to both personalized and common scenarios. Experiments on Librispeech and internal voice assistant datasets show that our approach can achieve up to 6.7% and 20.7% relative reduction in WER and CER compared to the baseline respectively, mitigating up to 96.7% and 84.9% of the relative WER and CER increase for common cases. Furthermore, our approach has a minimal performance impact in personalized scenarios while maintaining a streaming inference pipeline with negligible RTF increase.
Abstract:Low-count PET is an efficient way to reduce radiation exposure and acquisition time, but the reconstructed images often suffer from low signal-to-noise ratio (SNR), thus affecting diagnosis and other downstream tasks. Recent advances in deep learning have shown great potential in improving low-count PET image quality, but acquiring a large, centralized, and diverse dataset from multiple institutions for training a robust model is difficult due to privacy and security concerns of patient data. Moreover, low-count PET data at different institutions may have different data distribution, thus requiring personalized models. While previous federated learning (FL) algorithms enable multi-institution collaborative training without the need of aggregating local data, addressing the large domain shift in the application of multi-institutional low-count PET denoising remains a challenge and is still highly under-explored. In this work, we propose FedFTN, a personalized federated learning strategy that addresses these challenges. FedFTN uses a local deep feature transformation network (FTN) to modulate the feature outputs of a globally shared denoising network, enabling personalized low-count PET denoising for each institution. During the federated learning process, only the denoising network's weights are communicated and aggregated, while the FTN remains at the local institutions for feature transformation. We evaluated our method using a large-scale dataset of multi-institutional low-count PET imaging data from three medical centers located across three continents, and showed that FedFTN provides high-quality low-count PET images, outperforming previous baseline FL reconstruction methods across all low-count levels at all three institutions.
Abstract:Recommender systems usually rely on observed user interaction data to build personalized recommendation models, assuming that the observed data reflect user interest. However, user interacting with an item may also due to conformity, the need to follow popular items. Most previous studies neglect user's conformity and entangle interest with it, which may cause the recommender systems fail to provide satisfying results. Therefore, from the cause-effect view, disentangling these interaction causes is a crucial issue. It also contributes to OOD problems, where training and test data are out-of-distribution. Nevertheless, it is quite challenging as we lack the signal to differentiate interest and conformity. The data sparsity of pure cause and the items' long-tail problem hinder disentangled causal embedding. In this paper, we propose DCCL, a framework that adopts contrastive learning to disentangle these two causes by sample augmentation for interest and conformity respectively. Futhermore, DCCL is model-agnostic, which can be easily deployed in any industrial online system. Extensive experiments are conducted over two real-world datasets and DCCL outperforms state-of-the-art baselines on top of various backbone models in various OOD environments. We also demonstrate the performance improvements by online A/B testing on Kuaishou, a billion-user scale short-video recommender system.
Abstract:Embedding-based retrieval (EBR) methods are widely used in modern recommender systems thanks to its simplicity and effectiveness. However, along the journey of deploying and iterating on EBR in production, we still identify some fundamental issues in existing methods. First, when dealing with large corpus of candidate items, EBR models often have difficulties in balancing the performance on distinguishing highly relevant items (positives) from both irrelevant ones (easy negatives) and from somewhat related yet not competitive ones (hard negatives). Also, we have little control in the diversity and fairness of the retrieval results because of the ``greedy'' nature of nearest vector search. These issues compromise the performance of EBR methods in large-scale industrial scenarios. This paper introduces a simple and proven-in-production solution to overcome these issues. The proposed solution takes a divide-and-conquer approach: the whole set of candidate items are divided into multiple clusters and we run EBR to retrieve relevant candidates from each cluster in parallel; top candidates from each cluster are then combined by some controllable merging strategies. This approach allows our EBR models to only concentrate on discriminating positives from mostly hard negatives. It also enables further improvement from a multi-tasking learning (MTL) perspective: retrieval problems within each cluster can be regarded as individual tasks; inspired by recent successes in prompting and prefix-tuning, we propose an efficient task adaption technique further boosting the retrieval performance within each cluster with negligible overheads.