Abstract:Current advances in human head modeling allow to generate plausible-looking 3D head models via neural representations. Nevertheless, constructing complete high-fidelity head models with explicitly controlled animation remains an issue. Furthermore, completing the head geometry based on a partial observation, e.g. coming from a depth sensor, while preserving details is often problematic for the existing methods. We introduce a generative model for detailed 3D head meshes on top of an articulated 3DMM which allows explicit animation and high-detail preservation at the same time. Our method is trained in two stages. First, we register a parametric head model with vertex displacements to each mesh of the recently introduced NPHM dataset of accurate 3D head scans. The estimated displacements are baked into a hand-crafted UV layout. Second, we train a StyleGAN model in order to generalize over the UV maps of displacements. The decomposition of the parametric model and high-quality vertex displacements allows us to animate the model and modify it semantically. We demonstrate the results of unconditional generation and fitting to the full or partial observation. The project page is available at https://seva100.github.io/headcraft.
Abstract:Recent progress in NeRF-based GANs has introduced a number of approaches for high-resolution and high-fidelity generative modeling of human heads with a possibility for novel view rendering. At the same time, one must solve an inverse problem to be able to re-render or modify an existing image or video. Despite the success of universal optimization-based methods for 2D GAN inversion, those, applied to 3D GANs, may fail to produce 3D-consistent renderings. Fast encoder-based techniques, such as those developed for StyleGAN, may also be less appealing due to the lack of identity preservation. In our work, we introduce a real-time method that bridges the gap between the two approaches by directly utilizing the tri-plane representation introduced for EG3D generative model. In particular, we build upon a feed-forward convolutional encoder for the latent code and extend it with a fully-convolutional predictor of tri-plane numerical offsets. As shown in our work, the renderings are similar in quality to optimization-based techniques and significantly outperform the baselines for novel view. As we empirically prove, this is a consequence of directly operating in the tri-plane space, not in the GAN parameter space, while making use of an encoder-based trainable approach.
Abstract:State-of-the-art face recognition systems require huge amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as skewed distributions of ethnicities and limited numbers of identities. On the other hand, the self-supervised revolution in the industry motivates research on adaptation of the related techniques to facial recognition. One of the most popular practical tricks is to augment the dataset by the samples drawn from the high-resolution high-fidelity models (e.g. StyleGAN-like), while preserving the identity. We show that a simple approach based on fine-tuning an encoder for StyleGAN allows to improve upon the state-of-the-art facial recognition and performs better compared to training on synthetic face identities. We also collect large-scale unlabeled datasets with controllable ethnic constitution -- AfricanFaceSet-5M (5 million images of different people) and AsianFaceSet-3M (3 million images of different people) and we show that pretraining on each of them improves recognition of the respective ethnicities (as well as also others), while combining all unlabeled datasets results in the biggest performance increase. Our self-supervised strategy is the most useful with limited amounts of labeled training data, which can be beneficial for more tailored face recognition tasks and when facing privacy concerns. Evaluation is provided based on a standard RFW dataset and a new large-scale RB-WebFace benchmark.
Abstract:In this work, a system for creating a relightable 3D portrait of a human head is presented. Our neural pipeline operates on a sequence of frames captured by a smartphone camera with the flash blinking (flash-no flash sequence). A coarse point cloud reconstructed via structure-from-motion software and multi-view denoising is then used as a geometric proxy. Afterwards, a deep rendering network is trained to regress dense albedo, normals, and environmental lighting maps for arbitrary new viewpoints. Effectively, the proxy geometry and the rendering network constitute a relightable 3D portrait model, that can be synthesized from an arbitrary viewpoint and under arbitrary lighting, e.g. directional light, point light, or an environment map. The model is fitted to the sequence of frames with human face-specific priors that enforce the plausibility of albedo-lighting decomposition and operates at the interactive frame rate. We evaluate the performance of the method under varying lighting conditions and at the extrapolated viewpoints and compare with existing relighting methods.
Abstract:We propose and evaluate a neural point-based graphics method that can model semi-transparent scene parts. Similarly to its predecessor pipeline, ours uses point clouds to model proxy geometry, and augments each point with a neural descriptor. Additionally, a learnable transparency value is introduced in our approach for each point. Our neural rendering procedure consists of two steps. Firstly, the point cloud is rasterized using ray grouping into a multi-channel image. This is followed by the neural rendering step that "translates" the rasterized image into an RGB output using a learnable convolutional network. New scenes can be modeled using gradient-based optimization of neural descriptors and of the rendering network. We show that novel views of semi-transparent point cloud scenes can be generated after training with our approach. Our experiments demonstrate the benefit of introducing semi-transparency into the neural point-based modeling for a range of scenes with semi-transparent parts.
Abstract:We present a new deep learning approach to pose-guided resynthesis of human photographs. At the heart of the new approach is the estimation of the complete body surface texture based on a single photograph. Since the input photograph always observes only a part of the surface, we suggest a new inpainting method that completes the texture of the human body. Rather than working directly with colors of texture elements, the inpainting network estimates an appropriate source location in the input image for each element of the body surface. This correspondence field between the input image and the texture is then further warped into the target image coordinate frame based on the desired pose, effectively establishing the correspondence between the source and the target view even when the pose change is drastic. The final convolutional network then uses the established correspondence and all other available information to synthesize the output image using a fully-convolutional architecture with deformable convolutions. We show the state-of-the-art result for pose-guided image synthesis. Additionally, we demonstrate the performance of our system for garment transfer and pose-guided face resynthesis.
Abstract:In this work, we propose a special cascade network for image segmentation, which is based on the U-Net networks as building blocks and the idea of the iterative refinement. The model was mainly applied to achieve higher recognition quality for the task of finding borders of the optic disc and cup, which are relevant to the presence of glaucoma. Compared to a single U-Net and the state-of-the-art methods for the investigated tasks, very high segmentation quality has been achieved without a need for increasing the volume of datasets. Our experiments include comparison with the best-known methods on publicly available databases DRIONS-DB, RIM-ONE v.3, DRISHTI-GS, and evaluation on a private data set collected in collaboration with University of California San Francisco Medical School. The analysis of the architecture details is presented, and it is argued that the model can be employed for a broad scope of image segmentation problems of similar nature.
Abstract:Glaucoma is the second leading cause of blindness all over the world, with approximately 60 million cases reported worldwide in 2010. If undiagnosed in time, glaucoma causes irreversible damage to the optic nerve leading to blindness. The optic nerve head examination, which involves measurement of cup-to-disc ratio, is considered one of the most valuable methods of structural diagnosis of the disease. Estimation of cup-to-disc ratio requires segmentation of optic disc and optic cup on eye fundus images and can be performed by modern computer vision algorithms. This work presents universal approach for automatic optic disc and cup segmentation, which is based on deep learning, namely, modification of U-Net convolutional neural network. Our experiments include comparison with the best known methods on publicly available databases DRIONS-DB, RIM-ONE v.3, DRISHTI-GS. For both optic disc and cup segmentation, our method achieves quality comparable to current state-of-the-art methods, outperforming them in terms of the prediction time.