Abstract:This paper explores the transformative potential of computer-assisted textual analysis in enhancing instructional quality through in-depth insights from educational artifacts. We integrate Richard Elmore's Instructional Core Framework to examine how artificial intelligence (AI) and machine learning (ML) methods, particularly natural language processing (NLP), can analyze educational content, teacher discourse, and student responses to foster instructional improvement. Through a comprehensive review and case studies within the Instructional Core Framework, we identify key areas where AI/ML integration offers significant advantages, including teacher coaching, student support, and content development. We unveil patterns that indicate AI/ML not only streamlines administrative tasks but also introduces novel pathways for personalized learning, providing actionable feedback for educators and contributing to a richer understanding of instructional dynamics. This paper emphasizes the importance of aligning AI/ML technologies with pedagogical goals to realize their full potential in educational settings, advocating for a balanced approach that considers ethical considerations, data quality, and the integration of human expertise.
Abstract:Obtaining stakeholders' diverse experiences and opinions about current policy in a timely manner is crucial for policymakers to identify strengths and gaps in resource allocation, thereby supporting effective policy design and implementation. However, manually coding even moderately sized interview texts or open-ended survey responses from stakeholders can often be labor-intensive and time-consuming. This study explores the integration of Large Language Models (LLMs)--like GPT-4--with human expertise to enhance text analysis of stakeholder interviews regarding K-12 education policy within one U.S. state. Employing a mixed-methods approach, human experts developed a codebook and coding processes as informed by domain knowledge and unsupervised topic modeling results. They then designed prompts to guide GPT-4 analysis and iteratively evaluate different prompts' performances. This combined human-computer method enabled nuanced thematic and sentiment analysis. Results reveal that while GPT-4 thematic coding aligned with human coding by 77.89% at specific themes, expanding to broader themes increased congruence to 96.02%, surpassing traditional Natural Language Processing (NLP) methods by over 25%. Additionally, GPT-4 is more closely matched to expert sentiment analysis than lexicon-based methods. Findings from quantitative measures and qualitative reviews underscore the complementary roles of human domain expertise and automated analysis as LLMs offer new perspectives and coding consistency. The human-computer interactive approach enhances efficiency, validity, and interpretability of educational policy research.
Abstract:Terrain traversability in off-road autonomy has traditionally relied on semantic classification or resource-intensive dynamics models to capture vehicle-terrain interactions. However, our experiences in the development of a high-speed off-road platform have revealed several critical challenges that are not adequately addressed by current methods at our operating speeds of 7--10 m/s. This study focuses particularly on uneven terrain geometries such as hills, banks, and ditches. These common high-risk geometries are capable of disabling the vehicle and causing severe passenger injuries if poorly traversed. We introduce a physics-based framework for identifying traversability constraints on terrain dynamics. Using this framework, we then derive two fundamental constraints, with a primary focus on mitigating rollover and ditch-crossing failures. In addition, we present the design of our planning and control system, which uses Model Predictive Control (MPC) and a low-level controller to enable the fast and efficient computation of these constraints to meet the demands of our aggressive driving. Through real-world experimentation and traversal of hills and ditches, our approach is tested and benchmarked against a human expert. These results demonstrate that our approach captures fundamental elements of safe and aggressive control on these terrain features.
Abstract:In this talk, we introduce Merlin HugeCTR. Merlin HugeCTR is an open source, GPU-accelerated integration framework for click-through rate estimation. It optimizes both training and inference, whilst enabling model training at scale with model-parallel embeddings and data-parallel neural networks. In particular, Merlin HugeCTR combines a high-performance GPU embedding cache with an hierarchical storage architecture, to realize low-latency retrieval of embeddings for online model inference tasks. In the MLPerf v1.0 DLRM model training benchmark, Merlin HugeCTR achieves a speedup of up to 24.6x on a single DGX A100 (8x A100) over PyTorch on 4x4-socket CPU nodes (4x4x28 cores). Merlin HugeCTR can also take advantage of multi-node environments to accelerate training even further. Since late 2021, Merlin HugeCTR additionally features a hierarchical parameter server (HPS) and supports deployment via the NVIDIA Triton server framework, to leverage the computational capabilities of GPUs for high-speed recommendation model inference. Using this HPS, Merlin HugeCTR users can achieve a 5~62x speedup (batch size dependent) for popular recommendation models over CPU baseline implementations, and dramatically reduce their end-to-end inference latency.
Abstract:Multivariate time-series forecasting is a critical task for many applications, and graph time-series network is widely studied due to its capability to capture the spatial-temporal correlation simultaneously. However, most existing works focus more on learning with the explicit prior graph structure, while ignoring potential information from the implicit graph structure, yielding incomplete structure modeling. Some recent works attempt to learn the intrinsic or implicit graph structure directly while lacking a way to combine explicit prior structure with implicit structure together. In this paper, we propose Regularized Graph Structure Learning (RGSL) model to incorporate both explicit prior structure and implicit structure together, and learn the forecasting deep networks along with the graph structure. RGSL consists of two innovative modules. First, we derive an implicit dense similarity matrix through node embedding, and learn the sparse graph structure using the Regularized Graph Generation (RGG) based on the Gumbel Softmax trick. Second, we propose a Laplacian Matrix Mixed-up Module (LM3) to fuse the explicit graph and implicit graph together. We conduct experiments on three real-word datasets. Results show that the proposed RGSL model outperforms existing graph forecasting algorithms with a notable margin, while learning meaningful graph structure simultaneously. Our code and models are made publicly available at https://github.com/alipay/RGSL.git.
Abstract:Network honeypots are often used by information security teams to measure the threat landscape in order to secure their networks. With the advancement of honeypot development, today's medium-interaction honeypots provide a way for security teams and researchers to deploy these active defense tools that require little maintenance on a variety of protocols. In this work, we deploy such honeypots on five different protocols on the public Internet and study the intent and sophistication of the attacks we observe. We then use the information gained to develop a clustering approach that identifies correlations in attacker behavior to discover IPs that are highly likely to be controlled by a single operator, illustrating the advantage of using these honeypots for data collection.
Abstract:Computer-generated holography (CGH) has broad applications such as direct-view display, virtual and augmented reality, as well as optical microscopy. CGH usually utilizes a spatial light modulator that displays a computer-generated phase mask, modulating the phase of coherent light in order to generate customized patterns. The algorithm that computes the phase mask is the core of CGH and is usually tailored to meet different applications. CGH for optical microscopy usually requires 3D accessibility (i.e., generating overlapping patterns along the $z$-axis) and micron-scale spatial precision. Here, we propose a CGH algorithm using an unsupervised generative model designed for optical microscopy to synthesize 3D selected illumination. The algorithm, named sparse deep CGH, is able to generate sparsely distributed points in a large 3D volume with higher contrast than conventional CGH algorithms.
Abstract:Logistic Regression (LR) is the most widely used machine learning model in industry due to its efficiency, robustness, and interpretability. Meanwhile, with the problem of data isolation and the requirement of high model performance, building secure and efficient LR model for multi-parties becomes a hot topic for both academia and industry. Existing works mainly employ either Homomorphic Encryption (HE) or Secret Sharing (SS) to build secure LR. HE based methods can deal with high-dimensional sparse features, but they may suffer potential security risk. In contrast, SS based methods have provable security but they have efficiency issue under high-dimensional sparse features. In this paper, we first present CAESAR, which combines HE and SS to build seCure lArge-scalE SpArse logistic Regression model and thus has the advantages of both efficiency and security. We then present the distributed implementation of CAESAR for scalability requirement. We finally deploy CAESAR into a risk control task and conduct comprehensive experiments to study the efficiency of CAESAR.
Abstract:Nowadays, the utilization of the ever expanding amount of data has made a huge impact on web technologies while also causing various types of security concerns. On one hand, potential gains are highly anticipated if different organizations could somehow collaboratively share their data for technological improvements. On the other hand, data security concerns may arise for both data holders and data providers due to commercial or sociological concerns. To make a balance between technical improvements and security limitations, we implement secure and scalable protocols for multiple data holders to train linear regression and logistic regression models. We build our protocols based on the secret sharing scheme, which is scalable and efficient in applications. Moreover, our proposed paradigm can be generalized to any secure multiparty training scenarios where only matrix summation and matrix multiplications are used. We demonstrate our approach by experiments which shows the scalability and efficiency of our proposed protocols, and finally present its real-world applications.