for the Alzheimer's Disease Neuroimaging Initiative
Abstract:We present a keypoint-based foundation model for general purpose brain MRI registration, based on the recently-proposed KeyMorph framework. Our model, called BrainMorph, serves as a tool that supports multi-modal, pairwise, and scalable groupwise registration. BrainMorph is trained on a massive dataset of over 100,000 3D volumes, skull-stripped and non-skull-stripped, from nearly 16,000 unique healthy and diseased subjects. BrainMorph is robust to large misalignments, interpretable via interrogating automatically-extracted keypoints, and enables rapid and controllable generation of many plausible transformations with different alignment types and different degrees of nonlinearity at test-time. We demonstrate the superiority of BrainMorph in solving 3D rigid, affine, and nonlinear registration on a variety of multi-modal brain MRI scans of healthy and diseased subjects, in both the pairwise and groupwise setting. In particular, we show registration accuracy and speeds that surpass current state-of-the-art methods, especially in the context of large initial misalignments and large group settings. All code and models are available at https://github.com/alanqrwang/brainmorph.
Abstract:Cerebral X-ray digital subtraction angiography (DSA) is the standard imaging technique for visualizing blood flow and guiding endovascular treatments. The quality of DSA is often negatively impacted by body motion during acquisition, leading to decreased diagnostic value. Time-consuming iterative methods address motion correction based on non-rigid registration, and employ sparse key points and non-rigidity penalties to limit vessel distortion. Recent methods alleviate subtraction artifacts by predicting the subtracted frame from the corresponding unsubtracted frame, but do not explicitly compensate for motion-induced misalignment between frames. This hinders the serial evaluation of blood flow, and often causes undesired vasculature and contrast flow alterations, leading to impeded usability in clinical practice. To address these limitations, we present AngioMoCo, a learning-based framework that generates motion-compensated DSA sequences from X-ray angiography. AngioMoCo integrates contrast extraction and motion correction, enabling differentiation between patient motion and intensity changes caused by contrast flow. This strategy improves registration quality while being substantially faster than iterative elastix-based methods. We demonstrate AngioMoCo on a large national multi-center dataset (MR CLEAN Registry) of clinically acquired angiographic images through comprehensive qualitative and quantitative analyses. AngioMoCo produces high-quality motion-compensated DSA, removing motion artifacts while preserving contrast flow. Code is publicly available at https://github.com/RuishengSu/AngioMoCo.
Abstract:Hypernetworks are neural networks that generate the parameters of another neural network. In many scenarios, current hypernetwork training strategies are unstable, and convergence is often far slower than for non-hypernetwork models. We show that this problem is linked to an issue that arises when using common choices of hypernetwork architecture and initialization. We demonstrate analytically and experimentally how this numerical issue can lead to an instability during training that slows, and sometimes even prevents, convergence. We also demonstrate that popular deep learning normalization strategies fail to address these issues. We then propose a solution to the problem based on a revised hypernetwork formulation that uses non-proportional additive parametrizations. We test the proposed reparametrization on several tasks, and demonstrate that it consistently leads to more stable training, achieving faster convergence.
Abstract:Convolutional neural networks (CNN) have become the predominant model for image segmentation tasks. Most CNN segmentation architectures resize spatial dimensions by a fixed factor of two to aggregate spatial context. Recent work has explored using other resizing factors to improve model accuracy for specific applications. However, finding the appropriate rescaling factor most often involves training a separate network for many different factors and comparing the performance of each model. The computational burden of these models means that in practice it is rarely done, and when done only a few different scaling factors are considered. In this work, we present a hypernetwork strategy that can be used to easily and rapidly generate the Pareto frontier for the trade-off between accuracy and efficiency as the rescaling factor varies. We show how to train a single hypernetwork that generates CNN parameters conditioned on a rescaling factor. This enables a user to quickly choose a rescaling factor that appropriately balances accuracy and computational efficiency for their particular needs. We focus on image segmentation tasks, and demonstrate the value of this approach across various domains. We also find that, for a given rescaling factor, our single hypernetwork outperforms CNNs trained with fixed rescaling factors.
Abstract:Neuroimaging to neuropathology correlation (NTNC) promises to enable the transfer of microscopic signatures of pathology to in vivo imaging with MRI, ultimately enhancing clinical care. NTNC traditionally requires a volumetric MRI scan, acquired either ex vivo or a short time prior to death. Unfortunately, ex vivo MRI is difficult and costly, and recent premortem scans of sufficient quality are seldom available. To bridge this gap, we present methodology to 3D reconstruct and segment full brain image volumes from brain dissection photographs, which are routinely acquired at many brain banks and neuropathology departments. The 3D reconstruction is achieved via a joint registration framework, which uses a reference volume other than MRI. This volume may represent either the sample at hand (e.g., a surface 3D scan) or the general population (a probabilistic atlas). In addition, we present a Bayesian method to segment the 3D reconstructed photographic volumes into 36 neuroanatomical structures, which is robust to nonuniform brightness within and across photographs. We evaluate our methods on a dataset with 24 brains, using Dice scores and volume correlations. The results show that dissection photography is a valid replacement for ex vivo MRI in many volumetric analyses, opening an avenue for MRI-free NTNC, including retrospective data. The code is available at https://github.com/htregidgo/DissectionPhotoVolumes.
Abstract:Non-rigid cortical registration is an important and challenging task due to the geometric complexity of the human cortex and the high degree of inter-subject variability. A conventional solution is to use a spherical representation of surface properties and perform registration by aligning cortical folding patterns in that space. This strategy produces accurate spatial alignment but often requires a high computational cost. Recently, convolutional neural networks (CNNs) have demonstrated the potential to dramatically speed up volumetric registration. However, due to distortions introduced by projecting a sphere to a 2D plane, a direct application of recent learning-based methods to surfaces yields poor results. In this study, we present SphereMorph, a diffeomorphic registration framework for cortical surfaces using deep networks that addresses these issues. SphereMorph uses a UNet-style network associated with a spherical kernel to learn the displacement field and warps the sphere using a modified spatial transformer layer. We propose a resampling weight in computing the data fitting loss to account for distortions introduced by polar projection, and demonstrate the performance of our proposed method on two tasks, including cortical parcellation and group-wise functional area alignment. The experiments show that the proposed SphereMorph is capable of modeling the geometric registration problem in a CNN framework and demonstrate superior registration accuracy and computational efficiency.
Abstract:This volume represents the accepted submissions from the Machine Learning for Health (ML4H) workshop at the conference on Neural Information Processing Systems (NeurIPS) 2018, held on December 8, 2018 in Montreal, Canada.