Abstract:Access to diverse, high-quality datasets is crucial for machine learning model performance, yet data sharing remains limited by privacy concerns and competitive interests, particularly in regulated domains like healthcare. This dynamic especially disadvantages smaller organizations that lack resources to purchase data or negotiate favorable sharing agreements. We present SecureKL, a privacy-preserving framework that enables organizations to identify beneficial data partnerships without exposing sensitive information. Building on recent advances in dataset combination methods, we develop a secure multiparty computation protocol that maintains strong privacy guarantees while achieving >90\% correlation with plaintext evaluations. In experiments with real-world hospital data, SecureKL successfully identifies beneficial data partnerships that improve model performance for intensive care unit mortality prediction while preserving data privacy. Our framework provides a practical solution for organizations seeking to leverage collective data resources while maintaining privacy and competitive advantages. These results demonstrate the potential for privacy-preserving data collaboration to advance machine learning applications in high-stakes domains while promoting more equitable access to data resources.
Abstract:This volume represents the accepted submissions from the Machine Learning for Health (ML4H) workshop at the conference on Neural Information Processing Systems (NeurIPS) 2018, held on December 8, 2018 in Montreal, Canada.
Abstract:Recent attempts to achieve fairness in predictive models focus on the balance between fairness and accuracy. In sensitive applications such as healthcare or criminal justice, this trade-off is often undesirable as any increase in prediction error could have devastating consequences. In this work, we argue that the fairness of predictions should be evaluated in context of the data, and that unfairness induced by inadequate samples sizes or unmeasured predictive variables should be addressed through data collection, rather than by constraining the model. We decompose cost-based metrics of discrimination into bias, variance, and noise, and propose actions aimed at estimating and reducing each term. Finally, we perform case-studies on prediction of income, mortality, and review ratings, confirming the value of this analysis. We find that data collection is often a means to reduce discrimination without sacrificing accuracy.