Abstract:While retrieval augmented generation (RAG) has been shown to enhance factuality of large language model (LLM) outputs, LLMs still suffer from hallucination, generating incorrect or irrelevant information. One common detection strategy involves prompting the LLM again to assess whether its response is grounded in the retrieved evidence, but this approach is costly. Alternatively, lightweight natural language inference (NLI) models for efficient grounding verification can be used at inference time. While existing pre-trained NLI models offer potential solutions, their performance remains subpar compared to larger models on realistic RAG inputs. RAG inputs are more complex than most datasets used for training NLI models and have characteristics specific to the underlying knowledge base, requiring adaptation of the NLI models to a specific target domain. Additionally, the lack of labeled instances in the target domain makes supervised domain adaptation, e.g., through fine-tuning, infeasible. To address these challenges, we introduce Automatic Generative Domain Adaptation (Auto-GDA). Our framework enables unsupervised domain adaptation through synthetic data generation. Unlike previous methods that rely on handcrafted filtering and augmentation strategies, Auto-GDA employs an iterative process to continuously improve the quality of generated samples using weak labels from less efficient teacher models and discrete optimization to select the most promising augmented samples. Experimental results demonstrate the effectiveness of our approach, with models fine-tuned on synthetic data using Auto-GDA often surpassing the performance of the teacher model and reaching the performance level of LLMs at 10 % of their computational cost.
Abstract:Large Language Models (LLMs) have the promise to revolutionize computing broadly, but their complexity and extensive training data also expose significant privacy vulnerabilities. One of the simplest privacy risks associated with LLMs is their susceptibility to membership inference attacks (MIAs), wherein an adversary aims to determine whether a specific data point was part of the model's training set. Although this is a known risk, state of the art methodologies for MIAs rely on training multiple computationally costly shadow models, making risk evaluation prohibitive for large models. Here we adapt a recent line of work which uses quantile regression to mount membership inference attacks; we extend this work by proposing a low-cost MIA that leverages an ensemble of small quantile regression models to determine if a document belongs to the model's training set or not. We demonstrate the effectiveness of this approach on fine-tuned LLMs of varying families (OPT, Pythia, Llama) and across multiple datasets. Across all scenarios we obtain comparable or improved accuracy compared to state of the art shadow model approaches, with as little as 6% of their computation budget. We demonstrate increased effectiveness across multi-epoch trained target models, and architecture miss-specification robustness, that is, we can mount an effective attack against a model using a different tokenizer and architecture, without requiring knowledge on the target model.
Abstract:There has been substantial recent concern that pricing algorithms might learn to ``collude.'' Supra-competitive prices can emerge as a Nash equilibrium of repeated pricing games, in which sellers play strategies which threaten to punish their competitors who refuse to support high prices, and these strategies can be automatically learned. In fact, a standard economic intuition is that supra-competitive prices emerge from either the use of threats, or a failure of one party to optimize their payoff. Is this intuition correct? Would preventing threats in algorithmic decision-making prevent supra-competitive prices when sellers are optimizing for their own revenue? No. We show that supra-competitive prices can emerge even when both players are using algorithms which do not encode threats, and which optimize for their own revenue. We study sequential pricing games in which a first mover deploys an algorithm and then a second mover optimizes within the resulting environment. We show that if the first mover deploys any algorithm with a no-regret guarantee, and then the second mover even approximately optimizes within this now static environment, monopoly-like prices arise. The result holds for any no-regret learning algorithm deployed by the first mover and for any pricing policy of the second mover that obtains them profit at least as high as a random pricing would -- and hence the result applies even when the second mover is optimizing only within a space of non-responsive pricing distributions which are incapable of encoding threats. In fact, there exists a set of strategies, neither of which explicitly encode threats that form a Nash equilibrium of the simultaneous pricing game in algorithm space, and lead to near monopoly prices. This suggests that the definition of ``algorithmic collusion'' may need to be expanded, to include strategies without explicitly encoded threats.
Abstract:We conducted an experiment during the review process of the 2023 International Conference on Machine Learning (ICML) that requested authors with multiple submissions to rank their own papers based on perceived quality. We received 1,342 rankings, each from a distinct author, pertaining to 2,592 submissions. In this paper, we present an empirical analysis of how author-provided rankings could be leveraged to improve peer review processes at machine learning conferences. We focus on the Isotonic Mechanism, which calibrates raw review scores using author-provided rankings. Our analysis demonstrates that the ranking-calibrated scores outperform raw scores in estimating the ground truth ``expected review scores'' in both squared and absolute error metrics. Moreover, we propose several cautious, low-risk approaches to using the Isotonic Mechanism and author-provided rankings in peer review processes, including assisting senior area chairs' oversight of area chairs' recommendations, supporting the selection of paper awards, and guiding the recruitment of emergency reviewers. We conclude the paper by addressing the study's limitations and proposing future research directions.
Abstract:Machine unlearning is motivated by desire for data autonomy: a person can request to have their data's influence removed from deployed models, and those models should be updated as if they were retrained without the person's data. We show that, counter-intuitively, these updates expose individuals to high-accuracy reconstruction attacks which allow the attacker to recover their data in its entirety, even when the original models are so simple that privacy risk might not otherwise have been a concern. We show how to mount a near-perfect attack on the deleted data point from linear regression models. We then generalize our attack to other loss functions and architectures, and empirically demonstrate the effectiveness of our attacks across a wide range of datasets (capturing both tabular and image data). Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.
Abstract:Reinforcement learning (RL) in large or infinite state spaces is notoriously challenging, both theoretically (where worst-case sample and computational complexities must scale with state space cardinality) and experimentally (where function approximation and policy gradient techniques often scale poorly and suffer from instability and high variance). One line of research attempting to address these difficulties makes the natural assumption that we are given a collection of heuristic base or $\textit{constituent}$ policies upon which we would like to improve in a scalable manner. In this work we aim to compete with the $\textit{max-following policy}$, which at each state follows the action of whichever constituent policy has the highest value. The max-following policy is always at least as good as the best constituent policy, and may be considerably better. Our main result is an efficient algorithm that learns to compete with the max-following policy, given only access to the constituent policies (but not their value functions). In contrast to prior work in similar settings, our theoretical results require only the minimal assumption of an ERM oracle for value function approximation for the constituent policies (and not the global optimal policy or the max-following policy itself) on samplable distributions. We illustrate our algorithm's experimental effectiveness and behavior on several robotic simulation testbeds.
Abstract:There is a long history in machine learning of model ensembling, beginning with boosting and bagging and continuing to the present day. Much of this history has focused on combining models for classification and regression, but recently there is interest in more complex settings such as ensembling policies in reinforcement learning. Strong connections have also emerged between ensembling and multicalibration techniques. In this work, we further investigate these themes by considering a setting in which we wish to ensemble models for multidimensional output predictions that are in turn used for downstream optimization. More precisely, we imagine we are given a number of models mapping a state space to multidimensional real-valued predictions. These predictions form the coefficients of a linear objective that we would like to optimize under specified constraints. The fundamental question we address is how to improve and combine such models in a way that outperforms the best of them in the downstream optimization problem. We apply multicalibration techniques that lead to two provably efficient and convergent algorithms. The first of these (the white box approach) requires being given models that map states to output predictions, while the second (the \emph{black box} approach) requires only policies (mappings from states to solutions to the optimization problem). For both, we provide convergence and utility guarantees. We conclude by investigating the performance and behavior of the two algorithms in a controlled experimental setting.
Abstract:This paper introduces a framework for post-processing machine learning models so that their predictions satisfy multi-group fairness guarantees. Based on the celebrated notion of multicalibration, we introduce $(\mathbf{s},\mathcal{G}, \alpha)-$GMC (Generalized Multi-Dimensional Multicalibration) for multi-dimensional mappings $\mathbf{s}$, constraint set $\mathcal{G}$, and a pre-specified threshold level $\alpha$. We propose associated algorithms to achieve this notion in general settings. This framework is then applied to diverse scenarios encompassing different fairness concerns, including false negative rate control in image segmentation, prediction set conditional uncertainty quantification in hierarchical classification, and de-biased text generation in language models. We conduct numerical studies on several datasets and tasks.
Abstract:This paper proposes the use of "multicalibration" to yield interpretable and reliable confidence scores for outputs generated by large language models (LLMs). Multicalibration asks for calibration not just marginally, but simultaneously across various intersecting groupings of the data. We show how to form groupings for prompt/completion pairs that are correlated with the probability of correctness via two techniques: clustering within an embedding space, and "self-annotation" - querying the LLM by asking it various yes-or-no questions about the prompt. We also develop novel variants of multicalibration algorithms that offer performance improvements by reducing their tendency to overfit. Through systematic benchmarking across various question answering datasets and LLMs, we show how our techniques can yield confidence scores that provide substantial improvements in fine-grained measures of both calibration and accuracy compared to existing methods.
Abstract:We study a repeated contracting setting in which a Principal adaptively chooses amongst $k$ Agents at each of $T$ rounds. The Agents are non-myopic, and so a mechanism for the Principal induces a $T$-round extensive form game amongst the Agents. We give several results aimed at understanding an under-explored aspect of contract theory -- the game induced when choosing an Agent to contract with. First, we show that this game admits a pure-strategy \emph{non-responsive} equilibrium amongst the Agents -- informally an equilibrium in which the Agent's actions depend on the history of realized states of nature, but not on the history of each other's actions, and so avoids the complexities of collusion and threats. Next, we show that if the Principal selects Agents using a \emph{monotone} bandit algorithm, then for any concave contract, in any such equilibrium, the Principal obtains no regret to contracting with the best Agent in hindsight -- not just given their realized actions, but also to the counterfactual world in which they had offered a guaranteed $T$-round contract to the best Agent in hindsight, which would have induced a different sequence of actions. Finally, we show that if the Principal selects Agents using a monotone bandit algorithm which guarantees no swap-regret, then the Principal can additionally offer only limited liability contracts (in which the Agent never needs to pay the Principal) while getting no-regret to the counterfactual world in which she offered a linear contract to the best Agent in hindsight -- despite the fact that linear contracts are not limited liability. We instantiate this theorem by demonstrating the existence of a monotone no swap-regret bandit algorithm, which to our knowledge has not previously appeared in the literature.