Abstract:We define "decision swap regret" which generalizes both prediction for downstream swap regret and omniprediction, and give algorithms for obtaining it for arbitrary multi-dimensional Lipschitz loss functions in online adversarial settings. We also give sample complexity bounds in the batch setting via an online-to-batch reduction. When applied to omniprediction, our algorithm gives the first polynomial sample-complexity bounds for Lipschitz loss functions -- prior bounds either applied only to linear loss (or binary outcomes) or scaled exponentially with the error parameter even under the assumption that the loss functions were convex. When applied to prediction for downstream regret, we give the first algorithm capable of guaranteeing swap regret bounds for all downstream agents with non-linear loss functions over a multi-dimensional outcome space: prior work applied only to linear loss functions, modeling risk neutral agents. Our general bounds scale exponentially with the dimension of the outcome space, but we give improved regret and sample complexity bounds for specific families of multidimensional functions of economic interest: constant elasticity of substitution (CES), Cobb-Douglas, and Leontief utility functions.
Abstract:In traditional reinforcement learning (RL), the learner aims to solve a single objective optimization problem: find the policy that maximizes expected reward. However, in many real-world settings, it is important to optimize over multiple objectives simultaneously. For example, when we are interested in fairness, states might have feature annotations corresponding to multiple (intersecting) demographic groups to whom reward accrues, and our goal might be to maximize the reward of the group receiving the minimal reward. In this work, we consider a multi-objective optimization problem in which each objective is defined by a state-based reweighting of a single scalar reward function. This generalizes the problem of maximizing the reward of the minimum reward group. We provide oracle-efficient algorithms to solve these multi-objective RL problems even when the number of objectives is exponentially large-for tabular MDPs, as well as for large MDPs when the group functions have additional structure. Finally, we experimentally validate our theoretical results and demonstrate applications on a preferential attachment graph MDP.
Abstract:A fundamental question in data-driven decision making is how to quantify the uncertainty of predictions in ways that can usefully inform downstream action. This interface between prediction uncertainty and decision-making is especially important in risk-sensitive domains, such as medicine. In this paper, we develop decision-theoretic foundations that connect uncertainty quantification using prediction sets with risk-averse decision-making. Specifically, we answer three fundamental questions: (1) What is the correct notion of uncertainty quantification for risk-averse decision makers? We prove that prediction sets are optimal for decision makers who wish to optimize their value at risk. (2) What is the optimal policy that a risk averse decision maker should use to map prediction sets to actions? We show that a simple max-min decision policy is optimal for risk-averse decision makers. Finally, (3) How can we derive prediction sets that are optimal for such decision makers? We provide an exact characterization in the population regime and a distribution free finite-sample construction. Answering these questions naturally leads to an algorithm, Risk-Averse Calibration (RAC), which follows a provably optimal design for deriving action policies from predictions. RAC is designed to be both practical-capable of leveraging the quality of predictions in a black-box manner to enhance downstream utility-and safe-adhering to a user-defined risk threshold and optimizing the corresponding risk quantile of the user's downstream utility. Finally, we experimentally demonstrate the significant advantages of RAC in applications such as medical diagnosis and recommendation systems. Specifically, we show that RAC achieves a substantially improved trade-off between safety and utility, offering higher utility compared to existing methods while maintaining the safety guarantee.
Abstract:We present an efficient reduction that converts any machine learning algorithm into an interactive protocol, enabling collaboration with another party (e.g., a human) to achieve consensus on predictions and improve accuracy. This approach imposes calibration conditions on each party, which are computationally and statistically tractable relaxations of Bayesian rationality. These conditions are sensible even in prior-free settings, representing a significant generalization of Aumann's classic "agreement theorem." In our protocol, the model first provides a prediction. The human then responds by either agreeing or offering feedback. The model updates its state and revises its prediction, while the human may adjust their beliefs. This iterative process continues until the two parties reach agreement. Initially, we study a setting that extends Aumann's Agreement Theorem, where parties aim to agree on a one-dimensional expectation by iteratively sharing their current estimates. Here, we recover the convergence theorem of Aaronson'05 under weaker assumptions. We then address the case where parties hold beliefs over distributions with d outcomes, exploring two feedback mechanisms. The first involves vector-valued estimates of predictions, while the second adopts a decision-theoretic approach: the human, needing to take an action from a finite set based on utility, communicates their utility-maximizing action at each round. In this setup, the number of rounds until agreement remains independent of d. Finally, we generalize to scenarios with more than two parties, where computational complexity scales linearly with the number of participants. Our protocols rely on simple, efficient conditions and produce predictions that surpass the accuracy of any individual party's alone.
Abstract:While retrieval augmented generation (RAG) has been shown to enhance factuality of large language model (LLM) outputs, LLMs still suffer from hallucination, generating incorrect or irrelevant information. One common detection strategy involves prompting the LLM again to assess whether its response is grounded in the retrieved evidence, but this approach is costly. Alternatively, lightweight natural language inference (NLI) models for efficient grounding verification can be used at inference time. While existing pre-trained NLI models offer potential solutions, their performance remains subpar compared to larger models on realistic RAG inputs. RAG inputs are more complex than most datasets used for training NLI models and have characteristics specific to the underlying knowledge base, requiring adaptation of the NLI models to a specific target domain. Additionally, the lack of labeled instances in the target domain makes supervised domain adaptation, e.g., through fine-tuning, infeasible. To address these challenges, we introduce Automatic Generative Domain Adaptation (Auto-GDA). Our framework enables unsupervised domain adaptation through synthetic data generation. Unlike previous methods that rely on handcrafted filtering and augmentation strategies, Auto-GDA employs an iterative process to continuously improve the quality of generated samples using weak labels from less efficient teacher models and discrete optimization to select the most promising augmented samples. Experimental results demonstrate the effectiveness of our approach, with models fine-tuned on synthetic data using Auto-GDA often surpassing the performance of the teacher model and reaching the performance level of LLMs at 10 % of their computational cost.
Abstract:Large Language Models (LLMs) have the promise to revolutionize computing broadly, but their complexity and extensive training data also expose significant privacy vulnerabilities. One of the simplest privacy risks associated with LLMs is their susceptibility to membership inference attacks (MIAs), wherein an adversary aims to determine whether a specific data point was part of the model's training set. Although this is a known risk, state of the art methodologies for MIAs rely on training multiple computationally costly shadow models, making risk evaluation prohibitive for large models. Here we adapt a recent line of work which uses quantile regression to mount membership inference attacks; we extend this work by proposing a low-cost MIA that leverages an ensemble of small quantile regression models to determine if a document belongs to the model's training set or not. We demonstrate the effectiveness of this approach on fine-tuned LLMs of varying families (OPT, Pythia, Llama) and across multiple datasets. Across all scenarios we obtain comparable or improved accuracy compared to state of the art shadow model approaches, with as little as 6% of their computation budget. We demonstrate increased effectiveness across multi-epoch trained target models, and architecture miss-specification robustness, that is, we can mount an effective attack against a model using a different tokenizer and architecture, without requiring knowledge on the target model.
Abstract:There has been substantial recent concern that pricing algorithms might learn to ``collude.'' Supra-competitive prices can emerge as a Nash equilibrium of repeated pricing games, in which sellers play strategies which threaten to punish their competitors who refuse to support high prices, and these strategies can be automatically learned. In fact, a standard economic intuition is that supra-competitive prices emerge from either the use of threats, or a failure of one party to optimize their payoff. Is this intuition correct? Would preventing threats in algorithmic decision-making prevent supra-competitive prices when sellers are optimizing for their own revenue? No. We show that supra-competitive prices can emerge even when both players are using algorithms which do not encode threats, and which optimize for their own revenue. We study sequential pricing games in which a first mover deploys an algorithm and then a second mover optimizes within the resulting environment. We show that if the first mover deploys any algorithm with a no-regret guarantee, and then the second mover even approximately optimizes within this now static environment, monopoly-like prices arise. The result holds for any no-regret learning algorithm deployed by the first mover and for any pricing policy of the second mover that obtains them profit at least as high as a random pricing would -- and hence the result applies even when the second mover is optimizing only within a space of non-responsive pricing distributions which are incapable of encoding threats. In fact, there exists a set of strategies, neither of which explicitly encode threats that form a Nash equilibrium of the simultaneous pricing game in algorithm space, and lead to near monopoly prices. This suggests that the definition of ``algorithmic collusion'' may need to be expanded, to include strategies without explicitly encoded threats.
Abstract:We conducted an experiment during the review process of the 2023 International Conference on Machine Learning (ICML) that requested authors with multiple submissions to rank their own papers based on perceived quality. We received 1,342 rankings, each from a distinct author, pertaining to 2,592 submissions. In this paper, we present an empirical analysis of how author-provided rankings could be leveraged to improve peer review processes at machine learning conferences. We focus on the Isotonic Mechanism, which calibrates raw review scores using author-provided rankings. Our analysis demonstrates that the ranking-calibrated scores outperform raw scores in estimating the ground truth ``expected review scores'' in both squared and absolute error metrics. Moreover, we propose several cautious, low-risk approaches to using the Isotonic Mechanism and author-provided rankings in peer review processes, including assisting senior area chairs' oversight of area chairs' recommendations, supporting the selection of paper awards, and guiding the recruitment of emergency reviewers. We conclude the paper by addressing the study's limitations and proposing future research directions.
Abstract:Machine unlearning is motivated by desire for data autonomy: a person can request to have their data's influence removed from deployed models, and those models should be updated as if they were retrained without the person's data. We show that, counter-intuitively, these updates expose individuals to high-accuracy reconstruction attacks which allow the attacker to recover their data in its entirety, even when the original models are so simple that privacy risk might not otherwise have been a concern. We show how to mount a near-perfect attack on the deleted data point from linear regression models. We then generalize our attack to other loss functions and architectures, and empirically demonstrate the effectiveness of our attacks across a wide range of datasets (capturing both tabular and image data). Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.
Abstract:Reinforcement learning (RL) in large or infinite state spaces is notoriously challenging, both theoretically (where worst-case sample and computational complexities must scale with state space cardinality) and experimentally (where function approximation and policy gradient techniques often scale poorly and suffer from instability and high variance). One line of research attempting to address these difficulties makes the natural assumption that we are given a collection of heuristic base or $\textit{constituent}$ policies upon which we would like to improve in a scalable manner. In this work we aim to compete with the $\textit{max-following policy}$, which at each state follows the action of whichever constituent policy has the highest value. The max-following policy is always at least as good as the best constituent policy, and may be considerably better. Our main result is an efficient algorithm that learns to compete with the max-following policy, given only access to the constituent policies (but not their value functions). In contrast to prior work in similar settings, our theoretical results require only the minimal assumption of an ERM oracle for value function approximation for the constituent policies (and not the global optimal policy or the max-following policy itself) on samplable distributions. We illustrate our algorithm's experimental effectiveness and behavior on several robotic simulation testbeds.