We present an efficient reduction that converts any machine learning algorithm into an interactive protocol, enabling collaboration with another party (e.g., a human) to achieve consensus on predictions and improve accuracy. This approach imposes calibration conditions on each party, which are computationally and statistically tractable relaxations of Bayesian rationality. These conditions are sensible even in prior-free settings, representing a significant generalization of Aumann's classic "agreement theorem." In our protocol, the model first provides a prediction. The human then responds by either agreeing or offering feedback. The model updates its state and revises its prediction, while the human may adjust their beliefs. This iterative process continues until the two parties reach agreement. Initially, we study a setting that extends Aumann's Agreement Theorem, where parties aim to agree on a one-dimensional expectation by iteratively sharing their current estimates. Here, we recover the convergence theorem of Aaronson'05 under weaker assumptions. We then address the case where parties hold beliefs over distributions with d outcomes, exploring two feedback mechanisms. The first involves vector-valued estimates of predictions, while the second adopts a decision-theoretic approach: the human, needing to take an action from a finite set based on utility, communicates their utility-maximizing action at each round. In this setup, the number of rounds until agreement remains independent of d. Finally, we generalize to scenarios with more than two parties, where computational complexity scales linearly with the number of participants. Our protocols rely on simple, efficient conditions and produce predictions that surpass the accuracy of any individual party's alone.