Abstract:We consider the problem of a learning agent who has to repeatedly play a general sum game against a strategic opponent who acts to maximize their own payoff by optimally responding against the learner's algorithm. The learning agent knows their own payoff function, but is uncertain about the payoff of their opponent (knowing only that it is drawn from some distribution $\mathcal{D}$). What learning algorithm should the agent run in order to maximize their own total utility? We demonstrate how to construct an $\varepsilon$-optimal learning algorithm (obtaining average utility within $\varepsilon$ of the optimal utility) for this problem in time polynomial in the size of the input and $1/\varepsilon$ when either the size of the game or the support of $\mathcal{D}$ is constant. When the learning algorithm is further constrained to be a no-regret algorithm, we demonstrate how to efficiently construct an optimal learning algorithm (asymptotically achieving the optimal utility) in polynomial time, independent of any other assumptions. Both results make use of recently developed machinery that converts the analysis of learning algorithms to the study of the class of corresponding geometric objects known as menus.
Abstract:We present an efficient reduction that converts any machine learning algorithm into an interactive protocol, enabling collaboration with another party (e.g., a human) to achieve consensus on predictions and improve accuracy. This approach imposes calibration conditions on each party, which are computationally and statistically tractable relaxations of Bayesian rationality. These conditions are sensible even in prior-free settings, representing a significant generalization of Aumann's classic "agreement theorem." In our protocol, the model first provides a prediction. The human then responds by either agreeing or offering feedback. The model updates its state and revises its prediction, while the human may adjust their beliefs. This iterative process continues until the two parties reach agreement. Initially, we study a setting that extends Aumann's Agreement Theorem, where parties aim to agree on a one-dimensional expectation by iteratively sharing their current estimates. Here, we recover the convergence theorem of Aaronson'05 under weaker assumptions. We then address the case where parties hold beliefs over distributions with d outcomes, exploring two feedback mechanisms. The first involves vector-valued estimates of predictions, while the second adopts a decision-theoretic approach: the human, needing to take an action from a finite set based on utility, communicates their utility-maximizing action at each round. In this setup, the number of rounds until agreement remains independent of d. Finally, we generalize to scenarios with more than two parties, where computational complexity scales linearly with the number of participants. Our protocols rely on simple, efficient conditions and produce predictions that surpass the accuracy of any individual party's alone.
Abstract:There has been substantial recent concern that pricing algorithms might learn to ``collude.'' Supra-competitive prices can emerge as a Nash equilibrium of repeated pricing games, in which sellers play strategies which threaten to punish their competitors who refuse to support high prices, and these strategies can be automatically learned. In fact, a standard economic intuition is that supra-competitive prices emerge from either the use of threats, or a failure of one party to optimize their payoff. Is this intuition correct? Would preventing threats in algorithmic decision-making prevent supra-competitive prices when sellers are optimizing for their own revenue? No. We show that supra-competitive prices can emerge even when both players are using algorithms which do not encode threats, and which optimize for their own revenue. We study sequential pricing games in which a first mover deploys an algorithm and then a second mover optimizes within the resulting environment. We show that if the first mover deploys any algorithm with a no-regret guarantee, and then the second mover even approximately optimizes within this now static environment, monopoly-like prices arise. The result holds for any no-regret learning algorithm deployed by the first mover and for any pricing policy of the second mover that obtains them profit at least as high as a random pricing would -- and hence the result applies even when the second mover is optimizing only within a space of non-responsive pricing distributions which are incapable of encoding threats. In fact, there exists a set of strategies, neither of which explicitly encode threats that form a Nash equilibrium of the simultaneous pricing game in algorithm space, and lead to near monopoly prices. This suggests that the definition of ``algorithmic collusion'' may need to be expanded, to include strategies without explicitly encoded threats.
Abstract:We conducted an experiment during the review process of the 2023 International Conference on Machine Learning (ICML) that requested authors with multiple submissions to rank their own papers based on perceived quality. We received 1,342 rankings, each from a distinct author, pertaining to 2,592 submissions. In this paper, we present an empirical analysis of how author-provided rankings could be leveraged to improve peer review processes at machine learning conferences. We focus on the Isotonic Mechanism, which calibrates raw review scores using author-provided rankings. Our analysis demonstrates that the ranking-calibrated scores outperform raw scores in estimating the ground truth ``expected review scores'' in both squared and absolute error metrics. Moreover, we propose several cautious, low-risk approaches to using the Isotonic Mechanism and author-provided rankings in peer review processes, including assisting senior area chairs' oversight of area chairs' recommendations, supporting the selection of paper awards, and guiding the recruitment of emergency reviewers. We conclude the paper by addressing the study's limitations and proposing future research directions.
Abstract:We study a repeated contracting setting in which a Principal adaptively chooses amongst $k$ Agents at each of $T$ rounds. The Agents are non-myopic, and so a mechanism for the Principal induces a $T$-round extensive form game amongst the Agents. We give several results aimed at understanding an under-explored aspect of contract theory -- the game induced when choosing an Agent to contract with. First, we show that this game admits a pure-strategy \emph{non-responsive} equilibrium amongst the Agents -- informally an equilibrium in which the Agent's actions depend on the history of realized states of nature, but not on the history of each other's actions, and so avoids the complexities of collusion and threats. Next, we show that if the Principal selects Agents using a \emph{monotone} bandit algorithm, then for any concave contract, in any such equilibrium, the Principal obtains no regret to contracting with the best Agent in hindsight -- not just given their realized actions, but also to the counterfactual world in which they had offered a guaranteed $T$-round contract to the best Agent in hindsight, which would have induced a different sequence of actions. Finally, we show that if the Principal selects Agents using a monotone bandit algorithm which guarantees no swap-regret, then the Principal can additionally offer only limited liability contracts (in which the Agent never needs to pay the Principal) while getting no-regret to the counterfactual world in which she offered a linear contract to the best Agent in hindsight -- despite the fact that linear contracts are not limited liability. We instantiate this theorem by demonstrating the existence of a monotone no swap-regret bandit algorithm, which to our knowledge has not previously appeared in the literature.
Abstract:Blasiok et al. [2023] proposed distance to calibration as a natural measure of calibration error that unlike expected calibration error (ECE) is continuous. Recently, Qiao and Zheng [2024] gave a non-constructive argument establishing the existence of an online predictor that can obtain $O(\sqrt{T})$ distance to calibration in the adversarial setting, which is known to be impossible for ECE. They leave as an open problem finding an explicit, efficient algorithm. We resolve this problem and give an extremely simple, efficient, deterministic algorithm that obtains distance to calibration error at most $2\sqrt{T}$.