Abstract:Recent advancements in machine learning (ML), natural language processing (NLP), and foundational models have shown promise for real-life applications in critical, albeit compute-constrainted fields like healthcare. In such areas, combining foundational models with supervised ML offers potential for automating tasks like diagnosis and treatment planning, but the limited availability of onsite computational resources pose significant challenges before applying these technologies effectively: Current approaches either yield subpar results when using pretrained models without task-specific adaptation, or require substantial computational resources for fine-tuning, which is often a barrier to entry in such environments. This renders them inaccessible in applications where performance and quality standards are high, but computational resources are scarce. To bridge the gap between best-in-class performance and accessibility, we propose a novel method for adapting foundational, multimodal embeddings to downstream tasks, without the need of expensive fine-tuning processes. Our method leverages frozen embeddings from Large Language Models (LLMs) and Vision Models, and uses contrastive learning to train a small, task-specific nonlinear projection that can be used in the downstream task, without having to fine-tune the original foundational models. We show that this efficient procedure leads to significant performance improvements across various downstream tasks, and perhaps more importantly with minimal computational overhead, offering a practical solution for the use of advanced, foundational ML models in resource-constrained settings.
Abstract:While retrieval augmented generation (RAG) has been shown to enhance factuality of large language model (LLM) outputs, LLMs still suffer from hallucination, generating incorrect or irrelevant information. One common detection strategy involves prompting the LLM again to assess whether its response is grounded in the retrieved evidence, but this approach is costly. Alternatively, lightweight natural language inference (NLI) models for efficient grounding verification can be used at inference time. While existing pre-trained NLI models offer potential solutions, their performance remains subpar compared to larger models on realistic RAG inputs. RAG inputs are more complex than most datasets used for training NLI models and have characteristics specific to the underlying knowledge base, requiring adaptation of the NLI models to a specific target domain. Additionally, the lack of labeled instances in the target domain makes supervised domain adaptation, e.g., through fine-tuning, infeasible. To address these challenges, we introduce Automatic Generative Domain Adaptation (Auto-GDA). Our framework enables unsupervised domain adaptation through synthetic data generation. Unlike previous methods that rely on handcrafted filtering and augmentation strategies, Auto-GDA employs an iterative process to continuously improve the quality of generated samples using weak labels from less efficient teacher models and discrete optimization to select the most promising augmented samples. Experimental results demonstrate the effectiveness of our approach, with models fine-tuned on synthetic data using Auto-GDA often surpassing the performance of the teacher model and reaching the performance level of LLMs at 10 % of their computational cost.