Abstract:Conformal prediction (CP) is a distribution-free framework for achieving probabilistic guarantees on black-box models. CP is generally applied to a model post-training. Recent research efforts, on the other hand, have focused on optimizing CP efficiency during training. We formalize this concept as the problem of conformal risk minimization (CRM). In this direction, conformal training (ConfTr) by Stutz et al.(2022) is a technique that seeks to minimize the expected prediction set size of a model by simulating CP in-between training updates. Despite its potential, we identify a strong source of sample inefficiency in ConfTr that leads to overly noisy estimated gradients, introducing training instability and limiting practical use. To address this challenge, we propose variance-reduced conformal training (VR-ConfTr), a CRM method that incorporates a variance reduction technique in the gradient estimation of the ConfTr objective function. Through extensive experiments on various benchmark datasets, we demonstrate that VR-ConfTr consistently achieves faster convergence and smaller prediction sets compared to baselines.
Abstract:The recent introduction of large language models (LLMs) has revolutionized the field of robotics by enabling contextual reasoning and intuitive human-robot interaction in domains as varied as manipulation, locomotion, and self-driving vehicles. When viewed as a stand-alone technology, LLMs are known to be vulnerable to jailbreaking attacks, wherein malicious prompters elicit harmful text by bypassing LLM safety guardrails. To assess the risks of deploying LLMs in robotics, in this paper, we introduce RoboPAIR, the first algorithm designed to jailbreak LLM-controlled robots. Unlike existing, textual attacks on LLM chatbots, RoboPAIR elicits harmful physical actions from LLM-controlled robots, a phenomenon we experimentally demonstrate in three scenarios: (i) a white-box setting, wherein the attacker has full access to the NVIDIA Dolphins self-driving LLM, (ii) a gray-box setting, wherein the attacker has partial access to a Clearpath Robotics Jackal UGV robot equipped with a GPT-4o planner, and (iii) a black-box setting, wherein the attacker has only query access to the GPT-3.5-integrated Unitree Robotics Go2 robot dog. In each scenario and across three new datasets of harmful robotic actions, we demonstrate that RoboPAIR, as well as several static baselines, finds jailbreaks quickly and effectively, often achieving 100% attack success rates. Our results reveal, for the first time, that the risks of jailbroken LLMs extend far beyond text generation, given the distinct possibility that jailbroken robots could cause physical damage in the real world. Indeed, our results on the Unitree Go2 represent the first successful jailbreak of a deployed commercial robotic system. Addressing this emerging vulnerability is critical for ensuring the safe deployment of LLMs in robotics. Additional media is available at: https://robopair.org
Abstract:Watermarking is a technique used to embed a hidden signal in the probability distribution of text generated by large language models (LLMs), enabling attribution of the text to the originating model. We introduce smoothing attacks and show that existing watermarking methods are not robust against minor modifications of text. An adversary can use weaker language models to smooth out the distribution perturbations caused by watermarks without significantly compromising the quality of the generated text. The modified text resulting from the smoothing attack remains close to the distribution of text that the original model (without watermark) would have produced. Our attack reveals a fundamental limitation of a wide range of watermarking techniques.
Abstract:Conditional validity and length efficiency are two crucial aspects of conformal prediction (CP). Achieving conditional validity ensures accurate uncertainty quantification for data subpopulations, while proper length efficiency ensures that the prediction sets remain informative and non-trivial. Despite significant efforts to address each of these issues individually, a principled framework that reconciles these two objectives has been missing in the CP literature. In this paper, we develop Conformal Prediction with Length-Optimization (CPL) - a novel framework that constructs prediction sets with (near-) optimal length while ensuring conditional validity under various classes of covariate shifts, including the key cases of marginal and group-conditional coverage. In the infinite sample regime, we provide strong duality results which indicate that CPL achieves conditional validity and length optimality. In the finite sample regime, we show that CPL constructs conditionally valid prediction sets. Our extensive empirical evaluations demonstrate the superior prediction set size performance of CPL compared to state-of-the-art methods across diverse real-world and synthetic datasets in classification, regression, and text-related settings.
Abstract:Recent progress in large language models enables the creation of realistic machine-generated content. Watermarking is a promising approach to distinguish machine-generated text from human text, embedding statistical signals in the output that are ideally undetectable to humans. We propose a watermarking framework that encodes such signals through an error correcting code. Our method, termed robust binary code (RBC) watermark, introduces no distortion compared to the original probability distribution, and no noticeable degradation in quality. We evaluate our watermark on base and instruction fine-tuned models and find our watermark is robust to edits, deletions, and translations. We provide an information-theoretic perspective on watermarking, a powerful statistical test for detection and for generating p-values, and theoretical guarantees. Our empirical findings suggest our watermark is fast, powerful, and robust, comparing favorably to the state-of-the-art.
Abstract:Despite the success of Transformers on language understanding, code generation, and logical reasoning, they still fail to generalize over length on basic arithmetic tasks such as addition and multiplication. A major reason behind this failure is the vast difference in structure between numbers and text; For example, the numbers are typically parsed from right to left, and there is a correspondence between digits at the same position across different numbers. In contrast, for text, such symmetries are quite unnatural. In this work, we propose to encode these semantics explicitly into the model via modified number formatting and custom positional encodings. Empirically, our method allows a Transformer trained on numbers with at most 5-digits for addition and multiplication to generalize up to 50-digit numbers, without using additional data for longer sequences. We further demonstrate that traditional absolute positional encodings (APE) fail to generalize to longer sequences, even when trained with augmented data that captures task symmetries. To elucidate the importance of explicitly encoding structure, we prove that explicit incorporation of structure via positional encodings is necessary for out-of-distribution generalization. Finally, we pinpoint other challenges inherent to length generalization beyond capturing symmetries, in particular complexity of the underlying task, and propose changes in the training distribution to address them.
Abstract:The growing safety concerns surrounding Large Language Models (LLMs) raise an urgent need to align them with diverse human preferences to simultaneously enhance their helpfulness and safety. A promising approach is to enforce safety constraints through Reinforcement Learning from Human Feedback (RLHF). For such constrained RLHF, common Lagrangian-based primal-dual policy optimization methods are computationally expensive and often unstable. This paper presents a dualization perspective that reduces constrained alignment to an equivalent unconstrained alignment problem. We do so by pre-optimizing a smooth and convex dual function that has a closed form. This shortcut eliminates the need for cumbersome primal-dual policy iterations, thus greatly reducing the computational burden and improving training stability. Our strategy leads to two practical algorithms in model-based and preference-based scenarios (MoCAN and PeCAN, respectively). A broad range of experiments demonstrate the effectiveness of our methods.
Abstract:In this paper, we study a nonlinear spiked random matrix model where a nonlinear function is applied element-wise to a noise matrix perturbed by a rank-one signal. We establish a signal-plus-noise decomposition for this model and identify precise phase transitions in the structure of the signal components at critical thresholds of signal strength. To demonstrate the applicability of this decomposition, we then utilize it to study new phenomena in the problems of signed signal recovery in nonlinear models and community detection in transformed stochastic block models. Finally, we validate our results through a series of numerical simulations.
Abstract:In this paper, we focus on the problem of conformal prediction with conditional guarantees. Prior work has shown that it is impossible to construct nontrivial prediction sets with full conditional coverage guarantees. A wealth of research has considered relaxations of full conditional guarantees, relying on some predefined uncertainty structures. Departing from this line of thinking, we propose Partition Learning Conformal Prediction (PLCP), a framework to improve conditional validity of prediction sets through learning uncertainty-guided features from the calibration data. We implement PLCP efficiently with alternating gradient descent, utilizing off-the-shelf machine learning models. We further analyze PLCP theoretically and provide conditional guarantees for infinite and finite sample sizes. Finally, our experimental results over four real-world and synthetic datasets show the superior performance of PLCP compared to state-of-the-art methods in terms of coverage and length in both classification and regression scenarios.
Abstract:Language Models (LMs) have shown promising performance in natural language generation. However, as LMs often generate incorrect or hallucinated responses, it is crucial to correctly quantify their uncertainty in responding to given inputs. In addition to verbalized confidence elicited via prompting, many uncertainty measures ($e.g.$, semantic entropy and affinity-graph-based measures) have been proposed. However, these measures can differ greatly, and it is unclear how to compare them, partly because they take values over different ranges ($e.g.$, $[0,\infty)$ or $[0,1]$). In this work, we address this issue by developing a novel and practical framework, termed $Rank$-$Calibration$, to assess uncertainty and confidence measures for LMs. Our key tenet is that higher uncertainty (or lower confidence) should imply lower generation quality, on average. Rank-calibration quantifies deviations from this ideal relationship in a principled manner, without requiring ad hoc binary thresholding of the correctness score ($e.g.$, ROUGE or METEOR). The broad applicability and the granular interpretability of our methods are demonstrated empirically.