Abstract:In this paper, we derive a new Kalman filter with probabilistic data association between measurements and states. We formulate a variational inference problem to approximate the posterior density of the state conditioned on the measurement data. We view the unknown data association as a latent variable and apply Expectation Maximization (EM) to obtain a filter with update step in the same form as the Kalman filter but with expanded measurement vector of all potential associations. We show that the association probabilities can be computed as permanents of matrices with measurement likelihood entries. We also propose an ambiguity check that associates only a subset of ambiguous measurements and states probabilistically, thus reducing the association time and preventing low-probability measurements from harming the estimation accuracy. Experiments in simulation show that our filter achieves lower tracking errors than the well-established joint probabilistic data association filter (JPDAF), while running at comparable rate. We also demonstrate the effectiveness of our filter in multi-object tracking (MOT) on multiple real-world datasets, including MOT17, MOT20, and DanceTrack. We achieve better higher order tracking accuracy (HOTA) than previous Kalman-filter methods and remain real-time. Associating only bounding boxes without deep features or velocities, our method ranks top-10 on both MOT17 and MOT20 in terms of HOTA. Given offline detections, our algorithm tracks at 250+ fps on a single laptop CPU. Code is available at https://github.com/hwcao17/pkf.
Abstract:Conformal prediction (CP) is a distribution-free framework for achieving probabilistic guarantees on black-box models. CP is generally applied to a model post-training. Recent research efforts, on the other hand, have focused on optimizing CP efficiency during training. We formalize this concept as the problem of conformal risk minimization (CRM). In this direction, conformal training (ConfTr) by Stutz et al.(2022) is a technique that seeks to minimize the expected prediction set size of a model by simulating CP in-between training updates. Despite its potential, we identify a strong source of sample inefficiency in ConfTr that leads to overly noisy estimated gradients, introducing training instability and limiting practical use. To address this challenge, we propose variance-reduced conformal training (VR-ConfTr), a CRM method that incorporates a variance reduction technique in the gradient estimation of the ConfTr objective function. Through extensive experiments on various benchmark datasets, we demonstrate that VR-ConfTr consistently achieves faster convergence and smaller prediction sets compared to baselines.
Abstract:The recent introduction of large language models (LLMs) has revolutionized the field of robotics by enabling contextual reasoning and intuitive human-robot interaction in domains as varied as manipulation, locomotion, and self-driving vehicles. When viewed as a stand-alone technology, LLMs are known to be vulnerable to jailbreaking attacks, wherein malicious prompters elicit harmful text by bypassing LLM safety guardrails. To assess the risks of deploying LLMs in robotics, in this paper, we introduce RoboPAIR, the first algorithm designed to jailbreak LLM-controlled robots. Unlike existing, textual attacks on LLM chatbots, RoboPAIR elicits harmful physical actions from LLM-controlled robots, a phenomenon we experimentally demonstrate in three scenarios: (i) a white-box setting, wherein the attacker has full access to the NVIDIA Dolphins self-driving LLM, (ii) a gray-box setting, wherein the attacker has partial access to a Clearpath Robotics Jackal UGV robot equipped with a GPT-4o planner, and (iii) a black-box setting, wherein the attacker has only query access to the GPT-3.5-integrated Unitree Robotics Go2 robot dog. In each scenario and across three new datasets of harmful robotic actions, we demonstrate that RoboPAIR, as well as several static baselines, finds jailbreaks quickly and effectively, often achieving 100% attack success rates. Our results reveal, for the first time, that the risks of jailbroken LLMs extend far beyond text generation, given the distinct possibility that jailbroken robots could cause physical damage in the real world. Indeed, our results on the Unitree Go2 represent the first successful jailbreak of a deployed commercial robotic system. Addressing this emerging vulnerability is critical for ensuring the safe deployment of LLMs in robotics. Additional media is available at: https://robopair.org
Abstract:A driving force behind the diverse applicability of modern machine learning is the ability to extract meaningful features across many sources. However, many practical domains involve data that are non-identically distributed across sources, and statistically dependent within its source, violating vital assumptions in existing theoretical studies. Toward addressing these issues, we establish statistical guarantees for learning general $\textit{nonlinear}$ representations from multiple data sources that admit different input distributions and possibly dependent data. Specifically, we study the sample-complexity of learning $T+1$ functions $f_\star^{(t)} \circ g_\star$ from a function class $\mathcal F \times \mathcal G$, where $f_\star^{(t)}$ are task specific linear functions and $g_\star$ is a shared nonlinear representation. A representation $\hat g$ is estimated using $N$ samples from each of $T$ source tasks, and a fine-tuning function $\hat f^{(0)}$ is fit using $N'$ samples from a target task passed through $\hat g$. We show that when $N \gtrsim C_{\mathrm{dep}} (\mathrm{dim}(\mathcal F) + \mathrm{C}(\mathcal G)/T)$, the excess risk of $\hat f^{(0)} \circ \hat g$ on the target task decays as $\nu_{\mathrm{div}} \big(\frac{\mathrm{dim}(\mathcal F)}{N'} + \frac{\mathrm{C}(\mathcal G)}{N T} \big)$, where $C_{\mathrm{dep}}$ denotes the effect of data dependency, $\nu_{\mathrm{div}}$ denotes an (estimatable) measure of $\textit{task-diversity}$ between the source and target tasks, and $\mathrm C(\mathcal G)$ denotes the complexity of the representation class $\mathcal G$. In particular, our analysis reveals: as the number of tasks $T$ increases, both the sample requirement and risk bound converge to that of $r$-dimensional regression as if $g_\star$ had been given, and the effect of dependency only enters the sample requirement, leaving the risk bound matching the iid setting.
Abstract:Flying quadrotors in tight formations is a challenging problem. It is known that in the near-field airflow of a quadrotor, the aerodynamic effects induced by the propellers are complex and difficult to characterize. Although machine learning tools can potentially be used to derive models that capture these effects, these data-driven approaches can be sample inefficient and the resulting models often do not generalize as well as their first-principles counterparts. In this work, we propose a framework that combines the benefits of first-principles modeling and data-driven approaches to construct an accurate and sample efficient representation of the complex aerodynamic effects resulting from quadrotors flying in formation. The data-driven component within our model is lightweight, making it amenable for optimization-based control design. Through simulations and physical experiments, we show that incorporating the model into a novel learning-based nonlinear model predictive control (MPC) framework results in substantial performance improvements in terms of trajectory tracking and disturbance rejection. In particular, our framework significantly outperforms nominal MPC in physical experiments, achieving a 40.1% improvement in the average trajectory tracking errors and a 57.5% reduction in the maximum vertical separation errors. Our framework also achieves exceptional sample efficiency, using only a total of 46 seconds of flight data for training across both simulations and physical experiments. Furthermore, with our proposed framework, the quadrotors achieve an exceptionally tight formation, flying with an average separation of less than 1.5 body lengths throughout the flight. A video illustrating our framework and physical experiments is given here: https://youtu.be/Hv-0JiVoJGo
Abstract:As robots become increasingly capable, users will want to describe high-level missions and have robots fill in the gaps. In many realistic settings, pre-built maps are difficult to obtain, so execution requires exploration and mapping that are necessary and specific to the mission. Consider an emergency response scenario where a user commands a robot, "triage impacted regions." The robot must infer relevant semantics (victims, etc.) and exploration targets (damaged regions) based on priors or other context, then explore and refine its plan online. These missions are incompletely specified, meaning they imply subtasks and semantics. While many semantic planning methods operate online, they are typically designed for well specified tasks such as object search or exploration. Recently, Large Language Models (LLMs) have demonstrated powerful contextual reasoning over a range of robotic tasks described in natural language. However, existing LLM planners typically do not consider online planning or complex missions; rather, relevant subtasks are provided by a pre-built map or a user. We address these limitations via SPINE (online Semantic Planner for missions with Incomplete Natural language specifications in unstructured Environments). SPINE uses an LLM to reason about subtasks implied by the mission then realizes these subtasks in a receding horizon framework. Tasks are automatically validated for safety and refined online with new observations. We evaluate SPINE in simulation and real-world settings. Evaluation missions require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m$^2$ area. We evaluate SPINE against competitive baselines in single-agent and air-ground teaming applications. Please find videos and software on our project page: https://zacravichandran.github.io/SPINE
Abstract:In this survey, we design formal verification and control algorithms for autonomous systems with practical safety guarantees using conformal prediction (CP), a statistical tool for uncertainty quantification. We focus on learning-enabled autonomous systems (LEASs) in which the complexity of learning-enabled components (LECs) is a major bottleneck that hampers the use of existing model-based verification and design techniques. Instead, we advocate for the use of CP, and we will demonstrate its use in formal verification, systems and control theory, and robotics. We argue that CP is specifically useful due to its simplicity (easy to understand, use, and modify), generality (requires no assumptions on learned models and data distributions, i.e., is distribution-free), and efficiency (real-time capable and accurate). We pursue the following goals with this survey. First, we provide an accessible introduction to CP for non-experts who are interested in using CP to solve problems in autonomy. Second, we show how to use CP for the verification of LECs, e.g., for verifying input-output properties of neural networks. Third and fourth, we review recent articles that use CP for safe control design as well as offline and online verification of LEASs. We summarize their ideas in a unifying framework that can deal with the complexity of LEASs in a computationally efficient manner. In our exposition, we consider simple system specifications, e.g., robot navigation tasks, as well as complex specifications formulated in temporal logic formalisms. Throughout our survey, we compare to other statistical techniques (e.g., scenario optimization, PAC-Bayes theory, etc.) and how these techniques have been used in verification and control. Lastly, we point the reader to open problems and future research directions.
Abstract:In safety-critical robot planning or control, manually specifying safety constraints or learning them from demonstrations can be challenging. In this paper, we propose a certifiable alignment method for a robot to learn a safety constraint in its model predictive control (MPC) policy with human online directional feedback. To our knowledge, it is the first method to learn safety constraints from human feedback. The proposed method is based on an empirical observation: human directional feedback, when available, tends to guide the robot toward safer regions. The method only requires the direction of human feedback to update the learning hypothesis space. It is certifiable, providing an upper bound on the total number of human feedback in the case of successful learning of safety constraints, or declaring the misspecification of the hypothesis space, i.e., the true implicit safety constraint cannot be found within the specified hypothesis space. We evaluated the proposed method using numerical examples and user studies in two developed simulation games. Additionally, we implemented and tested the proposed method on a real-world Franka robot arm performing mobile water-pouring tasks in a user study. The simulation and experimental results demonstrate the efficacy and efficiency of our method, showing that it enables a robot to successfully learn safety constraints with a small handful (tens) of human directional corrections.
Abstract:Operator learning is an emerging area of machine learning which aims to learn mappings between infinite dimensional function spaces. Here we uncover a connection between operator learning architectures and conditioned neural fields from computer vision, providing a unified perspective for examining differences between popular operator learning models. We find that many commonly used operator learning models can be viewed as neural fields with conditioning mechanisms restricted to point-wise and/or global information. Motivated by this, we propose the Continuous Vision Transformer (CViT), a novel neural operator architecture that employs a vision transformer encoder and uses cross-attention to modulate a base field constructed with a trainable grid-based positional encoding of query coordinates. Despite its simplicity, CViT achieves state-of-the-art results across challenging benchmarks in climate modeling and fluid dynamics. Our contributions can be viewed as a first step towards adapting advanced computer vision architectures for building more flexible and accurate machine learning models in physical sciences.
Abstract:In this paper, we focus on the problem of shrinking-horizon Model Predictive Control (MPC) in uncertain dynamic environments. We consider controlling a deterministic autonomous system that interacts with uncontrollable stochastic agents during its mission. Employing tools from conformal prediction, existing works derive high-confidence prediction regions for the unknown agent trajectories, and integrate these regions in the design of suitable safety constraints for MPC. Despite guaranteeing probabilistic safety of the closed-loop trajectories, these constraints do not ensure feasibility of the respective MPC schemes for the entire duration of the mission. We propose a shrinking-horizon MPC that guarantees recursive feasibility via a gradual relaxation of the safety constraints as new prediction regions become available online. This relaxation enforces the safety constraints to hold over the least restrictive prediction region from the set of all available prediction regions. In a comparative case study with the state of the art, we empirically show that our approach results in tighter prediction regions and verify recursive feasibility of our MPC scheme.