Topic:Diabetes Prediction
What is Diabetes Prediction? Diabetes prediction is the process of forecasting the risk of developing diabetes based on health data and other factors.
Papers and Code
Nov 07, 2024
Abstract:In democratic societies, electoral systems play a crucial role in translating public preferences into political representation. Among these, the D'Hondt method is widely used to ensure proportional representation, balancing fair representation with governmental stability. Recently, there has been a growing interest in applying similar principles of proportional representation to enhance interpretability in machine learning, specifically in Explainable AI (XAI). This study investigates the integration of D'Hondt-based voting principles in the DhondtXAI method, which leverages resource allocation concepts to interpret feature importance within AI models. Through a comparison of SHAP (Shapley Additive Explanations) and DhondtXAI, we evaluate their effectiveness in feature attribution within CatBoost and XGBoost models for breast cancer and diabetes prediction, respectively. The DhondtXAI approach allows for alliance formation and thresholding to enhance interpretability, representing feature importance as seats in a parliamentary view. Statistical correlation analyses between SHAP values and DhondtXAI allocations support the consistency of interpretations, demonstrating DhondtXAI's potential as a complementary tool for understanding feature importance in AI models. The results highlight that integrating electoral principles, such as proportional representation and alliances, into AI explainability can improve user understanding, especially in high-stakes fields like healthcare.
Via
Nov 05, 2024
Abstract:In clinical practice, decision-making relies heavily on established protocols, often formalised as rules. Concurrently, Machine Learning (ML) models, trained on clinical data, aspire to integrate into medical decision-making processes. However, despite the growing number of ML applications, their adoption into clinical practice remains limited. Two critical concerns arise, relevant to the notions of consistency and continuity of care: (a) accuracy - the ML model, albeit more accurate, might introduce errors that would not have occurred by applying the protocol; (b) interpretability - ML models operating as black boxes might make predictions based on relationships that contradict established clinical knowledge. In this context, the literature suggests using ML models integrating domain knowledge for improved accuracy and interpretability. However, there is a lack of appropriate metrics for comparing ML models with clinical rules in addressing these challenges. Accordingly, in this article, we first propose metrics to assess the accuracy of ML models with respect to the established protocol. Secondly, we propose an approach to measure the distance of explanations provided by two rule sets, with the goal of comparing the explanation similarity between clinical rule-based systems and rules extracted from ML models. The approach is validated on the Pima Indians Diabetes dataset by training two neural networks - one exclusively on data, and the other integrating a clinical protocol. Our findings demonstrate that the integrated ML model achieves comparable performance to that of a fully data-driven model while exhibiting superior accuracy relative to the clinical protocol, ensuring enhanced continuity of care. Furthermore, we show that our integrated model provides explanations for predictions that align more closely with the clinical protocol compared to the data-driven model.
Via
Nov 03, 2024
Abstract:Feature engineering is crucial for optimizing machine learning model performance, particularly in tabular data classification tasks. Leveraging advancements in natural language processing, this study presents a systematic approach to enrich tabular datasets with features derived from large language model embeddings. Through a comprehensive ablation study on diverse datasets, we assess the impact of RoBERTa and GPT-2 embeddings on ensemble classifiers, including Random Forest, XGBoost, and CatBoost. Results indicate that integrating embeddings with traditional numerical and categorical features often enhances predictive performance, especially on datasets with class imbalance or limited features and samples, such as UCI Adult, Heart Disease, Titanic, and Pima Indian Diabetes, with improvements particularly notable in XGBoost and CatBoost classifiers. Additionally, feature importance analysis reveals that LLM-derived features frequently rank among the most impactful for the predictions. This study provides a structured approach to embedding-based feature enrichment and illustrates its benefits in ensemble learning for tabular data.
Via
Nov 03, 2024
Abstract:AI and deep learning are two recent innovations that have made a big difference in helping to solve problems in the clinical space. Using clinical imaging and sound examination, they also work on improving their vision so that they can spot diseases early and correctly. Because there aren't enough trained HR, clinical professionals are asking for help with innovation because it helps them adapt to more patients. Aside from serious health problems like cancer and diabetes, the effects of respiratory infections are also slowly getting worse and becoming dangerous for society. Respiratory diseases need to be found early and treated quickly, so listening to the sounds of the lungs is proving to be a very helpful tool along with chest X-rays. The presented research hopes to use deep learning ideas based on Convolutional Brain Organization to help clinical specialists by giving a detailed and thorough analysis of clinical respiratory sound data for Ongoing Obstructive Pneumonic identification. We used MFCC, Mel-Spectrogram, Chroma, Chroma (Steady Q), and Chroma CENS from the Librosa AI library in the tests we ran. The new system could also figure out how serious the infection was, whether it was mild, moderate, or severe. The test results agree with the outcome of the deep learning approach that was proposed. The accuracy of the framework arrangement has been raised to a score of 96% on the ICBHI. Also, in the led tests, we used K-Crisp Cross-Approval with ten parts to make the presentation of the new deep learning approach easier to understand. With a 96 percent accuracy rate, the suggested network is better than the rest. If you don't use cross-validation, the model is 90% accurate.
* 16 Pages, 11 Figures
Via
Oct 16, 2024
Abstract:This study develops a cloud-based deep learning system for early prediction of diabetes, leveraging the distributed computing capabilities of the AWS cloud platform and deep learning technologies to achieve efficient and accurate risk assessment. The system utilizes EC2 p3.8xlarge GPU instances to accelerate model training, reducing training time by 93.2% while maintaining a prediction accuracy of 94.2%. With an automated data processing and model training pipeline built using Apache Airflow, the system can complete end-to-end updates within 18.7 hours. In clinical applications, the system demonstrates a prediction accuracy of 89.8%, sensitivity of 92.3%, and specificity of 95.1%. Early interventions based on predictions lead to a 37.5% reduction in diabetes incidence among the target population. The system's high performance and scalability provide strong support for large-scale diabetes prevention and management, showcasing significant public health value.
* 6 Pages, 5 Figures, 3 Tables. The final version will be published in
the proceedings of the IEEE conference
Via
Oct 17, 2024
Abstract:Automatic subphenotyping from electronic health records (EHRs)provides numerous opportunities to understand diseases with unique subgroups and enhance personalized medicine for patients. However, existing machine learning algorithms either focus on specific diseases for better interpretability or produce coarse-grained phenotype topics without considering nuanced disease patterns. In this study, we propose a guided topic model, MixEHR-Nest, to infer sub-phenotype topics from thousands of disease using multi-modal EHR data. Specifically, MixEHR-Nest detects multiple subtopics from each phenotype topic, whose prior is guided by the expert-curated phenotype concepts such as Phenotype Codes (PheCodes) or Clinical Classification Software (CCS) codes. We evaluated MixEHR-Nest on two EHR datasets: (1) the MIMIC-III dataset consisting of over 38 thousand patients from intensive care unit (ICU) from Beth Israel Deaconess Medical Center (BIDMC) in Boston, USA; (2) the healthcare administrative database PopHR, comprising 1.3 million patients from Montreal, Canada. Experimental results demonstrate that MixEHR-Nest can identify subphenotypes with distinct patterns within each phenotype, which are predictive for disease progression and severity. Consequently, MixEHR-Nest distinguishes between type 1 and type 2 diabetes by inferring subphenotypes using CCS codes, which do not differentiate these two subtype concepts. Additionally, MixEHR-Nest not only improved the prediction accuracy of short-term mortality of ICU patients and initial insulin treatment in diabetic patients but also revealed the contributions of subphenotypes. For longitudinal analysis, MixEHR-Nest identified subphenotypes of distinct age prevalence under the same phenotypes, such as asthma, leukemia, epilepsy, and depression. The MixEHR-Nest software is available at GitHub: https://github.com/li-lab-mcgill/MixEHR-Nest.
Via
Oct 09, 2024
Abstract:Diabetic macular edema (DME) is a severe complication of diabetes, characterized by thickening of the central portion of the retina due to accumulation of fluid. DME is a significant and common cause of visual impairment in diabetic patients. Center-involved DME (ci-DME) is the highest risk form of disease as fluid extends close to the fovea which is responsible for sharp central vision. Earlier diagnosis or prediction of ci-DME may improve treatment outcomes. Here, we propose an ensemble method to predict ci-DME onset within a year using ultra-wide-field color fundus photography (UWF-CFP) images provided by the DIAMOND Challenge. We adopted a variety of baseline state-of-the-art classification networks including ResNet, DenseNet, EfficientNet, and VGG with the aim of enhancing model robustness. The best performing models were Densenet 121, Resnet 152 and EfficientNet b7, and these were assembled into a definitive predictive model. The final ensemble model demonstrates a strong performance with an Area Under Curve (AUC) of 0.7017, an F1 score of 0.6512, and an Expected Calibration Error (ECE) of 0.2057 when deployed on a synthetic dataset. The performance of this ensemble model is comparable to previous studies despite training and testing in a more realistic setting, indicating the potential of UWF-CFP combined with a deep learning classification system to facilitate earlier diagnosis, better treatment decisions, and improved prognostication in ci-DME.
Via
Oct 08, 2024
Abstract:The rising rates of diabetes necessitate innovative methods for its management. Continuous glucose monitors (CGM) are small medical devices that measure blood glucose levels at regular intervals providing insights into daily patterns of glucose variation. Forecasting of glucose trajectories based on CGM data holds the potential to substantially improve diabetes management, by both refining artificial pancreas systems and enabling individuals to make adjustments based on predictions to maintain optimal glycemic range.Despite numerous methods proposed for CGM-based glucose trajectory prediction, these methods are typically evaluated on small, private datasets, impeding reproducibility, further research, and practical adoption. The absence of standardized prediction tasks and systematic comparisons between methods has led to uncoordinated research efforts, obstructing the identification of optimal tools for tackling specific challenges. As a result, only a limited number of prediction methods have been implemented in clinical practice. To address these challenges, we present a comprehensive resource that provides (1) a consolidated repository of curated publicly available CGM datasets to foster reproducibility and accessibility; (2) a standardized task list to unify research objectives and facilitate coordinated efforts; (3) a set of benchmark models with established baseline performance, enabling the research community to objectively gauge new methods' efficacy; and (4) a detailed analysis of performance-influencing factors for model development. We anticipate these resources to propel collaborative research endeavors in the critical domain of CGM-based glucose predictions. {Our code is available online at github.com/IrinaStatsLab/GlucoBench.
* The Twelfth International Conference on Learning Representations.
2024
Via
Oct 01, 2024
Abstract:Diagnosis prediction is a critical task in healthcare, where timely and accurate identification of medical conditions can significantly impact patient outcomes. Traditional machine learning and deep learning models have achieved notable success in this domain but often lack interpretability which is a crucial requirement in clinical settings. In this study, we explore the use of neuro-symbolic methods, specifically Logical Neural Networks (LNNs), to develop explainable models for diagnosis prediction. Essentially, we design and implement LNN-based models that integrate domain-specific knowledge through logical rules with learnable thresholds. Our models, particularly $M_{\text{multi-pathway}}$ and $M_{\text{comprehensive}}$, demonstrate superior performance over traditional models such as Logistic Regression, SVM, and Random Forest, achieving higher accuracy (up to 80.52\%) and AUROC scores (up to 0.8457) in the case study of diabetes prediction. The learned weights and thresholds within the LNN models provide direct insights into feature contributions, enhancing interpretability without compromising predictive power. These findings highlight the potential of neuro-symbolic approaches in bridging the gap between accuracy and explainability in healthcare AI applications. By offering transparent and adaptable diagnostic models, our work contributes to the advancement of precision medicine and supports the development of equitable healthcare solutions. Future research will focus on extending these methods to larger and more diverse datasets to further validate their applicability across different medical conditions and populations.
Via
Sep 22, 2024
Abstract:Chronic wounds, including diabetic ulcers, pressure ulcers, and ulcers secondary to venous hypertension, affects more than 6.5 million patients and a yearly cost of more than $25 billion in the United States alone. Chronic wound treatment is currently a manual process, and we envision a future where robotics and automation will aid in this treatment to reduce cost and improve patient care. In this work, we present the development of the first robotic system for wound dressing removal which is reported to be the worst aspect of living with chronic wounds. Our method leverages differentiable physics-based simulation to perform gradient-based Model Predictive Control (MPC) for optimized trajectory planning. By integrating fracture mechanics of adhesion, we are able to model the peeling effect inherent to dressing adhesion. The system is further guided by carefully designed objective functions that promote both efficient and safe control, reducing the risk of tissue damage. We validated the efficacy of our approach through a series of experiments conducted on both synthetic skin phantoms and real human subjects. Our results demonstrate the system's ability to achieve precise and safe dressing removal trajectories, offering a promising solution for automating this essential healthcare procedure.
* Submitted to ICRA 2025
Via