Abstract:Type 1 Diabetes (T1D) management is a complex task due to many variability factors. Artificial Pancreas (AP) systems have alleviated patient burden by automating insulin delivery through advanced control algorithms. However, the effectiveness of these systems depends on accurate modeling of glucose-insulin dynamics, which traditional mathematical models often fail to capture due to their inability to adapt to patient-specific variations. This study introduces a Biological-Informed Recurrent Neural Network (BIRNN) framework to address these limitations. The BIRNN leverages a Gated Recurrent Units (GRU) architecture augmented with physics-informed loss functions that embed physiological constraints, ensuring a balance between predictive accuracy and consistency with biological principles. The framework is validated using the commercial UVA/Padova simulator, outperforming traditional linear models in glucose prediction accuracy and reconstruction of unmeasured states, even under circadian variations in insulin sensitivity. The results demonstrate the potential of BIRNN for personalized glucose regulation and future adaptive control strategies in AP systems.
Abstract:Recurrent Neural Networks (RNNs) have shown remarkable performances in system identification, particularly in nonlinear dynamical systems such as thermal processes. However, stability remains a critical challenge in practical applications: although the underlying process may be intrinsically stable, there may be no guarantee that the resulting RNN model captures this behavior. This paper addresses the stability issue by deriving a sufficient condition for Input-to-State Stability based on the infinity-norm (ISS$_{\infty}$) for Long Short-Term Memory (LSTM) networks. The obtained condition depends on fewer network parameters compared to prior works. A ISS$_{\infty}$-promoted training strategy is developed, incorporating a penalty term in the loss function that encourages stability and an ad hoc early stopping approach. The quality of LSTM models trained via the proposed approach is validated on a thermal system case study, where the ISS$_{\infty}$-promoted LSTM outperforms both a physics-based model and an ISS$_{\infty}$-promoted Gated Recurrent Unit (GRU) network while also surpassing non-ISS$_{\infty}$-promoted LSTM and GRU RNNs.