Diabetes is a prevalent chronic disease with significant health and economic burdens worldwide. Early prediction and diagnosis can aid in effective management and prevention of complications. This study explores the use of machine learning models to predict diabetes based on lifestyle factors using data from the Behavioral Risk Factor Surveillance System (BRFSS) 2015 survey. The dataset consists of 21 lifestyle and health-related features, capturing aspects such as physical activity, diet, mental health, and socioeconomic status. Three classification models, Decision Tree, K-Nearest Neighbors (KNN), and Logistic Regression, are implemented and evaluated to determine their predictive performance. The models are trained and tested using a balanced dataset, and their performances are assessed based on accuracy, precision, recall, and F1-score. The results indicate that the Decision Tree, KNN, and Logistic Regression achieve an accuracy of 0.74, 0.72, and 0.75, respectively, with varying strengths in precision and recall. The findings highlight the potential of machine learning in diabetes prediction and suggest future improvements through feature selection and ensemble learning techniques.