Abstract:Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities. The complementary information provided by multimodal fusion promotes better sentiment analysis compared to utilizing only a single modality. Nevertheless, in real-world applications, many unavoidable factors may lead to situations of uncertain modality missing, thus hindering the effectiveness of multimodal modeling and degrading the model's performance. To this end, we propose a Hierarchical Representation Learning Framework (HRLF) for the MSA task under uncertain missing modalities. Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction. Moreover, a hierarchical mutual information maximization mechanism is introduced to incrementally maximize the mutual information between multi-scale representations to align and reconstruct the high-level semantics in the representations. Ultimately, we propose a hierarchical adversarial learning mechanism that further aligns and adapts the latent distribution of sentiment-relevant representations to produce robust joint multimodal representations. Comprehensive experiments on three datasets demonstrate that HRLF significantly improves MSA performance under uncertain modality missing cases.
Abstract:Temporal Action Segmentation (TAS) is an essential task in video analysis, aiming to segment and classify continuous frames into distinct action segments. However, the ambiguous boundaries between actions pose a significant challenge for high-precision segmentation. Recent advances in diffusion models have demonstrated substantial success in TAS tasks due to their stable training process and high-quality generation capabilities. However, the heavy sampling steps required by diffusion models pose a substantial computational burden, limiting their practicality in real-time applications. Additionally, most related works utilize Transformer-based encoder architectures. Although these architectures excel at capturing long-range dependencies, they incur high computational costs and face feature-smoothing issues when processing long video sequences. To address these challenges, we propose EffiDiffAct, an efficient and high-performance TAS algorithm. Specifically, we develop a lightweight temporal feature encoder that reduces computational overhead and mitigates the rank collapse phenomenon associated with traditional self-attention mechanisms. Furthermore, we introduce an adaptive skip strategy that allows for dynamic adjustment of timestep lengths based on computed similarity metrics during inference, thereby further enhancing computational efficiency. Comprehensive experiments on the 50Salads, Breakfast, and GTEA datasets demonstrated the effectiveness of the proposed algorithm.
Abstract:Motion style transfer is a significant research direction in multimedia applications. It enables the rapid switching of different styles of the same motion for virtual digital humans, thus vastly increasing the diversity and realism of movements. It is widely applied in multimedia scenarios such as movies, games, and the Metaverse. However, most of the current work in this field adopts the GAN, which may lead to instability and convergence issues, making the final generated motion sequence somewhat chaotic and unable to reflect a highly realistic and natural style. To address these problems, we consider style motion as a condition and propose the Style Motion Conditioned Diffusion (SMCD) framework for the first time, which can more comprehensively learn the style features of motion. Moreover, we apply Mamba model for the first time in the motion style transfer field, introducing the Motion Style Mamba (MSM) module to handle longer motion sequences. Thirdly, aiming at the SMCD framework, we propose Diffusion-based Content Consistency Loss and Content Consistency Loss to assist the overall framework's training. Finally, we conduct extensive experiments. The results reveal that our method surpasses state-of-the-art methods in both qualitative and quantitative comparisons, capable of generating more realistic motion sequences.
Abstract:Multimodal sentiment analysis (MSA) aims to understand human sentiment through multimodal data. Most MSA efforts are based on the assumption of modality completeness. However, in real-world applications, some practical factors cause uncertain modality missingness, which drastically degrades the model's performance. To this end, we propose a Correlation-decoupled Knowledge Distillation (CorrKD) framework for the MSA task under uncertain missing modalities. Specifically, we present a sample-level contrastive distillation mechanism that transfers comprehensive knowledge containing cross-sample correlations to reconstruct missing semantics. Moreover, a category-guided prototype distillation mechanism is introduced to capture cross-category correlations using category prototypes to align feature distributions and generate favorable joint representations. Eventually, we design a response-disentangled consistency distillation strategy to optimize the sentiment decision boundaries of the student network through response disentanglement and mutual information maximization. Comprehensive experiments on three datasets indicate that our framework can achieve favorable improvements compared with several baselines.
Abstract:While large language models (LLMs) excel in world knowledge understanding, adapting them to specific subfields requires precise adjustments. Due to the model's vast scale, traditional global fine-tuning methods for large models can be computationally expensive and impact generalization. To address this challenge, a range of innovative Parameters-Efficient Fine-Tuning (PEFT) methods have emerged and achieved remarkable success in both LLMs and Large Vision-Language Models (LVLMs). In the medical domain, fine-tuning a medical Vision-Language Pretrained (VLP) model is essential for adapting it to specific tasks. Can the fine-tuning methods for large models be transferred to the medical field to enhance transfer learning efficiency? In this paper, we delve into the fine-tuning methods of LLMs and conduct extensive experiments to investigate the impact of fine-tuning methods for large models on existing multimodal models in the medical domain from the training data level and the model structure level. We show the different impacts of fine-tuning methods for large models on medical VLMs and develop the most efficient ways to fine-tune medical VLP models. We hope this research can guide medical domain researchers in optimizing VLMs' training costs, fostering the broader application of VLMs in healthcare fields. Code and dataset will be released upon acceptance.
Abstract:We propose a robust and accurate method for reconstructing 3D hand mesh from monocular images. This is a very challenging problem, as hands are often severely occluded by objects. Previous works often have disregarded 2D hand pose information, which contains hand prior knowledge that is strongly correlated with occluded regions. Thus, in this work, we propose a novel 3D hand mesh reconstruction network HandGCAT, that can fully exploit hand prior as compensation information to enhance occluded region features. Specifically, we designed the Knowledge-Guided Graph Convolution (KGC) module and the Cross-Attention Transformer (CAT) module. KGC extracts hand prior information from 2D hand pose by graph convolution. CAT fuses hand prior into occluded regions by considering their high correlation. Extensive experiments on popular datasets with challenging hand-object occlusions, such as HO3D v2, HO3D v3, and DexYCB demonstrate that our HandGCAT reaches state-of-the-art performance. The code is available at https://github.com/heartStrive/HandGCAT.