Abstract:Video diffusion models are able to generate high-quality videos by learning strong spatial-temporal priors on large-scale datasets. In this paper, we aim to investigate whether such priors derived from a generative process are suitable for video recognition, and eventually joint optimization of generation and recognition. Building upon Stable Video Diffusion, we introduce GenRec, the first unified framework trained with a random-frame conditioning process so as to learn generalized spatial-temporal representations. The resulting framework can naturally supports generation and recognition, and more importantly is robust even when visual inputs contain limited information. Extensive experiments demonstrate the efficacy of GenRec for both recognition and generation. In particular, GenRec achieves competitive recognition performance, offering 75.8% and 87.2% accuracy on SSV2 and K400, respectively. GenRec also performs the best class-conditioned image-to-video generation results, achieving 46.5 and 49.3 FVD scores on SSV2 and EK-100 datasets. Furthermore, GenRec demonstrates extraordinary robustness in scenarios that only limited frames can be observed.
Abstract:Text-guided video prediction (TVP) involves predicting the motion of future frames from the initial frame according to an instruction, which has wide applications in virtual reality, robotics, and content creation. Previous TVP methods make significant breakthroughs by adapting Stable Diffusion for this task. However, they struggle with frame consistency and temporal stability primarily due to the limited scale of video datasets. We observe that pretrained Image2Video diffusion models possess good priors for video dynamics but they lack textual control. Hence, transferring Image2Video models to leverage their video dynamic priors while injecting instruction control to generate controllable videos is both a meaningful and challenging task. To achieve this, we introduce the Multi-Modal Large Language Model (MLLM) to predict future video states based on initial frames and text instructions. More specifically, we design a dual query transformer (DQFormer) architecture, which integrates the instructions and frames into the conditional embeddings for future frame prediction. Additionally, we develop Long-Short Term Temporal Adapters and Spatial Adapters that can quickly transfer general video diffusion models to specific scenarios with minimal training costs. Experimental results show that our method significantly outperforms state-of-the-art techniques on four datasets: Something Something V2, Epic Kitchen-100, Bridge Data, and UCF-101. Notably, AID achieves 91.2% and 55.5% FVD improvements on Bridge and SSv2 respectively, demonstrating its effectiveness in various domains. More examples can be found at our website https://chenhsing.github.io/AID.
Abstract:Existing visual instruction tuning methods typically prompt large language models with textual descriptions to generate instruction-following data. Despite the promising performance achieved, these descriptions are derived from image annotations, which are oftentimes coarse-grained. Furthermore, the instructions might even contradict the visual content without observing the entire visual context. To address this challenge, we introduce a fine-grained visual instruction dataset, LVIS-Instruct4V, which contains 220K visually aligned and context-aware instructions produced by prompting the powerful GPT-4V with images from LVIS. Through experimental validation and case studies, we demonstrate that high-quality visual instructional data could improve the performance of LLaVA-1.5, a state-of-the-art large multimodal model, across a wide spectrum of benchmarks by clear margins. Notably, by simply replacing the LLaVA-Instruct with our LVIS-Instruct4V, we achieve better results than LLaVA on most challenging LMM benchmarks, e.g., LLaVA$^w$ (76.7 vs. 70.7) and MM-Vet (40.2 vs. 35.4). We release our data and model at https://github.com/X2FD/LVIS-INSTRUCT4V.
Abstract:Despite significant results achieved by Contrastive Language-Image Pretraining (CLIP) in zero-shot image recognition, limited effort has been made exploring its potential for zero-shot video recognition. This paper presents Open-VCLIP++, a simple yet effective framework that adapts CLIP to a strong zero-shot video classifier, capable of identifying novel actions and events during testing. Open-VCLIP++ minimally modifies CLIP to capture spatial-temporal relationships in videos, thereby creating a specialized video classifier while striving for generalization. We formally demonstrate that training Open-VCLIP++ is tantamount to continual learning with zero historical data. To address this problem, we introduce Interpolated Weight Optimization, a technique that leverages the advantages of weight interpolation during both training and testing. Furthermore, we build upon large language models to produce fine-grained video descriptions. These detailed descriptions are further aligned with video features, facilitating a better transfer of CLIP to the video domain. Our approach is evaluated on three widely used action recognition datasets, following a variety of zero-shot evaluation protocols. The results demonstrate that our method surpasses existing state-of-the-art techniques by significant margins. Specifically, we achieve zero-shot accuracy scores of 88.1%, 58.7%, and 81.2% on UCF, HMDB, and Kinetics-600 datasets respectively, outpacing the best-performing alternative methods by 8.5%, 8.2%, and 12.3%. We also evaluate our approach on the MSR-VTT video-text retrieval dataset, where it delivers competitive video-to-text and text-to-video retrieval performance, while utilizing substantially less fine-tuning data compared to other methods. Code is released at https://github.com/wengzejia1/Open-VCLIP.
Abstract:Exploring a substantial amount of unlabeled data, semi-supervised learning (SSL) boosts the recognition performance when only a limited number of labels are provided. However, traditional methods assume that the data distribution is class-balanced, which is difficult to achieve in reality due to the long-tailed nature of real-world data. While the data imbalance problem has been extensively studied in supervised learning (SL) paradigms, directly transferring existing approaches to SSL is nontrivial, as prior knowledge about data distribution remains unknown in SSL. In light of this, we propose Balanced Memory Bank (BMB), a semi-supervised framework for long-tailed recognition. The core of BMB is an online-updated memory bank that caches historical features with their corresponding pseudo labels, and the memory is also carefully maintained to ensure the data therein are class-rebalanced. Additionally, an adaptive weighting module is introduced to work jointly with the memory bank so as to further re-calibrate the biased training process. We conduct experiments on multiple datasets and demonstrate, among other things, that BMB surpasses state-of-the-art approaches by clear margins, for example 8.2$\%$ on the 1$\%$ labeled subset of ImageNet127 (with a resolution of 64$\times$64) and 4.3$\%$ on the 50$\%$ labeled subset of ImageNet-LT.
Abstract:Contrastive Language-Image Pretraining (CLIP) has demonstrated impressive zero-shot learning abilities for image understanding, yet limited effort has been made to investigate CLIP for zero-shot video recognition. We introduce Open-VCLIP, a simple yet effective approach that transforms CLIP into strong zero-shot video classifiers that can recognize unseen actions and events at test time. Our framework extends CLIP with minimal modifications to model spatial-temporal relationships in videos, making it a specialized video classifier, while striving for generalization. We formally show that training an Open-VCLIP is equivalent to continual learning with zero historical data. To address this problem, we propose Interpolated Weight Optimization, which utilizes the benefit of weight interpolation in both training and test time. We evaluate our method on three popular and challenging action recognition datasets following various zero-shot evaluation protocols and we demonstrate our approach outperforms state-of-the-art methods by clear margins. In particular, we achieve 87.9%, 58.3%, 81.1% zero-shot accuracy on UCF, HMDB and Kinetics-600 respectively, outperforming state-of-the-art methods by 8.3%, 7.8% and 12.2%.
Abstract:We study the training of Vision Transformers for semi-supervised image classification. Transformers have recently demonstrated impressive performance on a multitude of supervised learning tasks. Surprisingly, we find Vision Transformers perform poorly on a semi-supervised ImageNet setting. In contrast, Convolutional Neural Networks (CNNs) achieve superior results in small labeled data regime. Further investigation reveals that the reason is CNNs have strong spatial inductive bias. Inspired by this observation, we introduce a joint semi-supervised learning framework, Semiformer, which contains a Transformer branch, a Convolutional branch and a carefully designed fusion module for knowledge sharing between the branches. The Convolutional branch is trained on the limited supervised data and generates pseudo labels to supervise the training of the transformer branch on unlabeled data. Extensive experiments on ImageNet demonstrate that Semiformer achieves 75.5\% top-1 accuracy, outperforming the state-of-the-art. In addition, we show Semiformer is a general framework which is compatible with most modern Transformer and Convolutional neural architectures.
Abstract:There is a growing trend in placing video advertisements on social platforms for online marketing, which demands automatic approaches to understand the contents of advertisements effectively. Taking the 2021 TAAC competition as an opportunity, we developed a multimodal system to improve the ability of structured analysis of advertising video content. In our framework, we break down the video structuring analysis problem into two tasks, i.e., scene segmentation and multi-modal tagging. In scene segmentation, we build upon a temporal convolution module for temporal modeling to predict whether adjacent frames belong to the same scene. In multi-modal tagging, we first compute clip-level visual features by aggregating frame-level features with NeXt-SoftDBoF. The visual features are further complemented with textual features that are derived using a global-local attention mechanism to extract useful information from OCR (Optical Character Recognition) and ASR (Audio Speech Recognition) outputs. Our solution achieved a score of 0.2470 measured in consideration of localization and prediction accuracy, ranking fourth in the 2021 TAAC final leaderboard.
Abstract:Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distances across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
Abstract:Label distributions in real-world are oftentimes long-tailed and imbalanced, resulting in biased models towards dominant labels. While long-tailed recognition has been extensively studied for image classification tasks, limited effort has been made for video domain. In this paper, we introduce VideoLT, a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. Our VideoLT contains 256,218 untrimmed videos, annotated into 1,004 classes with a long-tailed distribution. Through extensive studies, we demonstrate that state-of-the-art methods used for long-tailed image recognition do not perform well in the video domain due to the additional temporal dimension in video data. This motivates us to propose FrameStack, a simple yet effective method for long-tailed video recognition task. In particular, FrameStack performs sampling at the frame-level in order to balance class distributions, and the sampling ratio is dynamically determined using knowledge derived from the network during training. Experimental results demonstrate that FrameStack can improve classification performance without sacrificing overall accuracy.