Abstract:Text-to-video models have made significant strides in generating short video clips from textual descriptions. Yet, a significant challenge remains: generating several video shots of the same characters, preserving their identity without hurting video quality, dynamics, and responsiveness to text prompts. We present Video Storyboarding, a training-free method to enable pretrained text-to-video models to generate multiple shots with consistent characters, by sharing features between them. Our key insight is that self-attention query features (Q) encode both motion and identity. This creates a hard-to-avoid trade-off between preserving character identity and making videos dynamic, when features are shared. To address this issue, we introduce a novel query injection strategy that balances identity preservation and natural motion retention. This approach improves upon naive consistency techniques applied to videos, which often struggle to maintain this delicate equilibrium. Our experiments demonstrate significant improvements in character consistency across scenes while maintaining high-quality motion and text alignment. These results offer insights into critical stages of video generation and the interplay of structure and motion in video diffusion models.
Abstract:Generating 3D visual scenes is at the forefront of visual generative AI, but current 3D generation techniques struggle with generating scenes with multiple high-resolution objects. Here we introduce Lay-A-Scene, which solves the task of Open-set 3D Object Arrangement, effectively arranging unseen objects. Given a set of 3D objects, the task is to find a plausible arrangement of these objects in a scene. We address this task by leveraging pre-trained text-to-image models. We personalize the model and explain how to generate images of a scene that contains multiple predefined objects without neglecting any of them. Then, we describe how to infer the 3D poses and arrangement of objects from a 2D generated image by finding a consistent projection of objects onto the 2D scene. We evaluate the quality of Lay-A-Scene using 3D objects from Objaverse and human raters and find that it often generates coherent and feasible 3D object arrangements.
Abstract:Multiview Structure from Motion is a fundamental and challenging computer vision problem. A recent deep-based approach was proposed utilizing matrix equivariant architectures for the simultaneous recovery of camera pose and 3D scene structure from large image collections. This work however made the unrealistic assumption that the point tracks given as input are clean of outliers. Here we propose an architecture suited to dealing with outliers by adding an inlier/outlier classifying module that respects the model equivariance and by adding a robust bundle adjustment step. Experiments demonstrate that our method can be successfully applied in realistic settings that include large image collections and point tracks extracted with common heuristics and include many outliers.
Abstract:We tackle the long-standing challenge of reconstructing 3D structures and camera positions from videos. The problem is particularly hard when objects are transformed in a non-rigid way. Current approaches to this problem make unrealistic assumptions or require a long optimization time. We present TracksTo4D, a novel deep learning-based approach that enables inferring 3D structure and camera positions from dynamic content originating from in-the-wild videos using a single feed-forward pass on a sparse point track matrix. To achieve this, we leverage recent advances in 2D point tracking and design an equivariant neural architecture tailored for directly processing 2D point tracks by leveraging their symmetries. TracksTo4D is trained on a dataset of in-the-wild videos utilizing only the 2D point tracks extracted from the videos, without any 3D supervision. Our experiments demonstrate that TracksTo4D generalizes well to unseen videos of unseen semantic categories at inference time, producing equivalent results to state-of-the-art methods while significantly reducing the runtime compared to other baselines.
Abstract:Text-to-image models offer a new level of creative flexibility by allowing users to guide the image generation process through natural language. However, using these models to consistently portray the same subject across diverse prompts remains challenging. Existing approaches fine-tune the model to teach it new words that describe specific user-provided subjects or add image conditioning to the model. These methods require lengthy per-subject optimization or large-scale pre-training. Moreover, they struggle to align generated images with text prompts and face difficulties in portraying multiple subjects. Here, we present ConsiStory, a training-free approach that enables consistent subject generation by sharing the internal activations of the pretrained model. We introduce a subject-driven shared attention block and correspondence-based feature injection to promote subject consistency between images. Additionally, we develop strategies to encourage layout diversity while maintaining subject consistency. We compare ConsiStory to a range of baselines, and demonstrate state-of-the-art performance on subject consistency and text alignment, without requiring a single optimization step. Finally, ConsiStory can naturally extend to multi-subject scenarios, and even enable training-free personalization for common objects.
Abstract:We present a new method for text-driven motion transfer - synthesizing a video that complies with an input text prompt describing the target objects and scene while maintaining an input video's motion and scene layout. Prior methods are confined to transferring motion across two subjects within the same or closely related object categories and are applicable for limited domains (e.g., humans). In this work, we consider a significantly more challenging setting in which the target and source objects differ drastically in shape and fine-grained motion characteristics (e.g., translating a jumping dog into a dolphin). To this end, we leverage a pre-trained and fixed text-to-video diffusion model, which provides us with generative and motion priors. The pillar of our method is a new space-time feature loss derived directly from the model. This loss guides the generation process to preserve the overall motion of the input video while complying with the target object in terms of shape and fine-grained motion traits.
Abstract:Point-cloud data collected in real-world applications are often incomplete. Data is typically missing due to objects being observed from partial viewpoints, which only capture a specific perspective or angle. Additionally, data can be incomplete due to occlusion and low-resolution sampling. Existing completion approaches rely on datasets of predefined objects to guide the completion of noisy and incomplete, point clouds. However, these approaches perform poorly when tested on Out-Of-Distribution (OOD) objects, that are poorly represented in the training dataset. Here we leverage recent advances in text-guided image generation, which lead to major breakthroughs in text-guided shape generation. We describe an approach called SDS-Complete that uses a pre-trained text-to-image diffusion model and leverages the text semantics of a given incomplete point cloud of an object, to obtain a complete surface representation. SDS-Complete can complete a variety of objects using test-time optimization without expensive collection of 3D information. We evaluate SDS Complete on incomplete scanned objects, captured by real-world depth sensors and LiDAR scanners. We find that it effectively reconstructs objects that are absent from common datasets, reducing Chamfer loss by 50% on average compared with current methods. Project page: https://sds-complete.github.io/
Abstract:We present Neural Fields for LiDAR (NFL), a method to optimise a neural field scene representation from LiDAR measurements, with the goal of synthesizing realistic LiDAR scans from novel viewpoints. NFL combines the rendering power of neural fields with a detailed, physically motivated model of the LiDAR sensing process, thus enabling it to accurately reproduce key sensor behaviors like beam divergence, secondary returns, and ray dropping. We evaluate NFL on synthetic and real LiDAR scans and show that it outperforms explicit reconstruct-then-simulate methods as well as other NeRF-style methods on LiDAR novel view synthesis task. Moreover, we show that the improved realism of the synthesized views narrows the domain gap to real scans and translates to better registration and semantic segmentation performance.
Abstract:In this work, we present Conditional Adversarial Latent Models (CALM), an approach for generating diverse and directable behaviors for user-controlled interactive virtual characters. Using imitation learning, CALM learns a representation of movement that captures the complexity and diversity of human motion, and enables direct control over character movements. The approach jointly learns a control policy and a motion encoder that reconstructs key characteristics of a given motion without merely replicating it. The results show that CALM learns a semantic motion representation, enabling control over the generated motions and style-conditioning for higher-level task training. Once trained, the character can be controlled using intuitive interfaces, akin to those found in video games.
Abstract:We present Neural Congealing -- a zero-shot self-supervised framework for detecting and jointly aligning semantically-common content across a given set of images. Our approach harnesses the power of pre-trained DINO-ViT features to learn: (i) a joint semantic atlas -- a 2D grid that captures the mode of DINO-ViT features in the input set, and (ii) dense mappings from the unified atlas to each of the input images. We derive a new robust self-supervised framework that optimizes the atlas representation and mappings per image set, requiring only a few real-world images as input without any additional input information (e.g., segmentation masks). Notably, we design our losses and training paradigm to account only for the shared content under severe variations in appearance, pose, background clutter or other distracting objects. We demonstrate results on a plethora of challenging image sets including sets of mixed domains (e.g., aligning images depicting sculpture and artwork of cats), sets depicting related yet different object categories (e.g., dogs and tigers), or domains for which large-scale training data is scarce (e.g., coffee mugs). We thoroughly evaluate our method and show that our test-time optimization approach performs favorably compared to a state-of-the-art method that requires extensive training on large-scale datasets.