Abstract:With the evolution of generative linguistic steganography techniques, conventional steganalysis falls short in robustly quantifying the alterations induced by steganography, thereby complicating detection. Consequently, the research paradigm has pivoted towards deep-learning-based linguistic steganalysis. This study offers a comprehensive review of existing contributions and evaluates prevailing developmental trajectories. Specifically, we first provided a formalized exposition of the general formulas for linguistic steganalysis, while comparing the differences between this field and the domain of text classification. Subsequently, we classified the existing work into two levels based on vector space mapping and feature extraction models, thereby comparing the research motivations, model advantages, and other details. A comparative analysis of the experiments is conducted to assess the performances. Finally, the challenges faced by this field are discussed, and several directions for future development and key issues that urgently need to be addressed are proposed.
Abstract:With the increasing complexity of the traffic environment, the significance of safety perception in intelligent driving is intensifying. Traditional methods in the field of intelligent driving perception rely on deep learning, which suffers from limited interpretability, often described as a "black box." This paper introduces a novel type of loss function, termed "Entropy Loss," along with an innovative training strategy. Entropy Loss is formulated based on the functionality of feature compression networks within the perception model. Drawing inspiration from communication systems, the information transmission process in a feature compression network is expected to demonstrate steady changes in information volume and a continuous decrease in information entropy. By modeling network layer outputs as continuous random variables, we construct a probabilistic model that quantifies changes in information volume. Entropy Loss is then derived based on these expectations, guiding the update of network parameters to enhance network interpretability. Our experiments indicate that the Entropy Loss training strategy accelerates the training process. Utilizing the same 60 training epochs, the accuracy of 3D object detection models using Entropy Loss on the KITTI test set improved by up to 4.47\% compared to models without Entropy Loss, underscoring the method's efficacy. The implementation code is available at \url{https://github.com/yhbcode000/Eloss-Interpretability}.
Abstract:Most existing robotic datasets capture static scene data and thus are limited in evaluating robots' dynamic performance. To address this, we present a mobile robot oriented large-scale indoor dataset, denoted as THUD (Tsinghua University Dynamic) robotic dataset, for training and evaluating their dynamic scene understanding algorithms. Specifically, the THUD dataset construction is first detailed, including organization, acquisition, and annotation methods. It comprises both real-world and synthetic data, collected with a real robot platform and a physical simulation platform, respectively. Our current dataset includes 13 larges-scale dynamic scenarios, 90K image frames, 20M 2D/3D bounding boxes of static and dynamic objects, camera poses, and IMU. The dataset is still continuously expanding. Then, the performance of mainstream indoor scene understanding tasks, e.g. 3D object detection, semantic segmentation, and robot relocalization, is evaluated on our THUD dataset. These experiments reveal serious challenges for some robot scene understanding tasks in dynamic scenes. By sharing this dataset, we aim to foster and iterate new mobile robot algorithms quickly for robot actual working dynamic environment, i.e. complex crowded dynamic scenes.
Abstract:To detect stego (steganographic text) in complex scenarios, linguistic steganalysis (LS) with various motivations has been proposed and achieved excellent performance. However, with the development of generative steganography, some stegos have strong concealment, especially after the emergence of LLMs-based steganography, the existing LS has low detection or even cannot detect them. We designed a novel LS with two modes called LSGC. In the generation mode, we created an LS-task "description" and used the generation ability of LLM to explain whether texts to be detected are stegos. On this basis, we rethought the principle of LS and LLMs, and proposed the classification mode. In this mode, LSGC deleted the LS-task "description" and changed the "causalLM" LLMs to the "sequenceClassification" architecture. The LS features can be extracted by only one pass of the model, and a linear layer with initialization weights is added to obtain the classification probability. Experiments on strongly concealed stegos show that LSGC significantly improves detection and reaches SOTA performance. Additionally, LSGC in classification mode greatly reduces training time while maintaining high performance.
Abstract:Considering data insufficiency in metal additive manufacturing (AM), transfer learning (TL) has been adopted to extract knowledge from source domains (e.g., completed printings) to improve the modeling performance in target domains (e.g., new printings). Current applications use all accessible source data directly in TL with no regard to the similarity between source and target data. This paper proposes a systematic method to find appropriate subsets of source data based on similarities between the source and target datasets for a given set of limited target domain data. Such similarity is characterized by the spatial and model distance metrics. A Pareto frontier-based source data selection method is developed, where the source data located on the Pareto frontier defined by two similarity distance metrics are selected iteratively. The method is integrated into an instance-based TL method (decision tree regression model) and a model-based TL method (fine-tuned artificial neural network). Both models are then tested on several regression tasks in metal AM. Comparison results demonstrate that 1) the source data selection method is general and supports integration with various TL methods and distance metrics, 2) compared with using all source data, the proposed method can find a small subset of source data from the same domain with better TL performance in metal AM regression tasks involving different processes and machines, and 3) when multiple source domains exist, the source data selection method could find the subset from one source domain to obtain comparable or better TL performance than the model constructed using data from all source domains.
Abstract:Accurately predicting the temperature field in metal additive manufacturing (AM) processes is critical to preventing overheating, adjusting process parameters, and ensuring process stability. While physics-based computational models offer precision, they are often time-consuming and unsuitable for real-time predictions and online control in iterative design scenarios. Conversely, machine learning models rely heavily on high-quality datasets, which can be costly and challenging to obtain within the metal AM domain. Our work addresses this by introducing a physics-informed neural network framework specifically designed for temperature field prediction in metal AM. This framework incorporates a physics-informed input, physics-informed loss function, and a Convolutional Long Short-Term Memory (ConvLSTM) architecture. Utilizing real-time temperature data from the process, our model predicts 2D temperature fields for future timestamps across diverse geometries, deposition patterns, and process parameters. We validate the proposed framework in two scenarios: full-field temperature prediction for a thin wall and 2D temperature field prediction for cylinder and cubic parts, demonstrating errors below 3% and 1%, respectively. Our proposed framework exhibits the flexibility to be applied across diverse scenarios with varying process parameters, geometries, and deposition patterns.
Abstract:This paper aims to study a practical issue in metal AM, i.e., how to predict the thermal field of yet-to-print parts online when only a few sensors are available. This work proposes an online thermal field prediction method using mapping and reconstruction, which could be integrated into a metal AM process for online performance control. Based on the similarity of temperature curves (curve segments of a temperature profile of one point), the thermal field mapping applies an artificial neural network to estimate the temperature curves of points on the yet-to-print layer from measured temperatures of certain points on the previously printed layer. With measured/predicted temperature profiles of several points on the same layer, the thermal field reconstruction proposes a reduced order model (ROM) to construct the temperature profiles of all points on the same layer, which could be used to build the temperature field of the entire layer. The training of ROM is performed with an extreme learning machine (ELM) for computational efficiency. Fifteen wire arc AM experiments and nine simulations are designed for thin walls with a fixed length and unidirectional printing of each layer. The test results indicate that the proposed prediction method could construct the thermal field of a yet-to-print layer within 0.1 seconds on a low-cost desktop. Meanwhile, the method has acceptable generalization capability in most cases from lower layers to higher layers in the same simulation and from one simulation to a new simulation on different AM process parameters. More importantly, after fine-tuning the proposed method with limited experimental data, the relative errors of all predicted temperature profiles on a new experiment are sufficiently small, demonstrating the applicability and generalization of the proposed thermal field prediction method in online applications for metal AM.
Abstract:Hot-wire directed energy deposition using a laser beam (DED-LB/w) is a method of metal additive manufacturing (AM) that has benefits of high material utilization and deposition rate, but parts manufactured by DED-LB/w suffer from a substantial heat input and undesired surface finish. Hence, monitoring and controlling the process parameters and signatures during the deposition is crucial to ensure the quality of final part properties and geometries. This paper explores the dynamic modeling of the DED-LB/w process and introduces a parameter-signature-property modeling and control approach to enhance the quality of modeling and control of part properties that cannot be measured in situ. The study investigates different process parameters that influence the melt pool width (signature) and bead width (property) in single and multi-layer beads. The proposed modeling approach utilizes a parameter-signature model as F_1 and a signature-property model as F_2. Linear and nonlinear modeling approaches are compared to describe a dynamic relationship between process parameters and a process signature, the melt pool width (F_1). A fully connected artificial neural network is employed to model and predict the final part property, i.e., bead width, based on melt pool signatures (F_2). Finally, the effectiveness and usefulness of the proposed parameter-signature-property modeling is tested and verified by integrating the parameter-signature (F_1) and signature-property (F_2) models in the closed-loop control of the width of the part. Compared with the control loop with only F_1, the proposed method shows clear advantages and bears potential to be applied to control other part properties that cannot be directly measured or monitored in situ.
Abstract:Transfer learning (TL) based additive manufacturing (AM) modeling is an emerging field to reuse the data from historical products and mitigate the data insufficiency in modeling new products. Although some trials have been conducted recently, the inherent challenges of applying TL in AM modeling are seldom discussed, e.g., which source domain to use, how much target data is needed, and whether to apply data preprocessing techniques. This paper aims to answer those questions through a case study defined based on an open-source dataset about metal AM products. In the case study, five TL methods are integrated with decision tree regression (DTR) and artificial neural network (ANN) to construct six TL-based models, whose performances are then compared with the baseline DTR and ANN in a proposed validation framework. The comparisons are used to quantify the performance of applied TL methods and are discussed from the perspective of similarity, training data size, and data preprocessing. Finally, the source AM domain with larger qualitative similarity and a certain range of target-to-source training data size ratio are recommended. Besides, the data preprocessing should be performed carefully to balance the modeling performance and the performance improvement due to TL.
Abstract:How to interpret a data mining model has received much attention recently, because people may distrust a black-box predictive model if they do not understand how the model works. Hence, it will be trustworthy if a model can provide transparent illustrations on how to make the decision. Although many rule-based interpretable classification algorithms have been proposed, all these existing solutions cannot directly construct an interpretable model to provide personalized prediction for each individual test sample. In this paper, we make a first step towards formally introducing personalized interpretable classification as a new data mining problem to the literature. In addition to the problem formulation on this new issue, we present a greedy algorithm called PIC (Personalized Interpretable Classifier) to identify a personalized rule for each individual test sample. To demonstrate the necessity, feasibility and advantages of such a personalized interpretable classification method, we conduct a series of empirical studies on real data sets. The experimental results show that: (1) The new problem formulation enables us to find interesting rules for test samples that may be missed by existing non-personalized classifiers. (2) Our algorithm can achieve the same-level predictive accuracy as those state-of-the-art (SOTA) interpretable classifiers. (3) On a real data set for predicting breast cancer metastasis, such a personalized interpretable classifier can outperform SOTA methods in terms of both accuracy and interpretability.