Abstract:Standard clothing asset generation involves creating forward-facing flat-lay garment images displayed on a clear background by extracting clothing information from diverse real-world contexts, which presents significant challenges due to highly standardized sampling distributions and precise structural requirements in the generated images. Existing models have limited spatial perception and often exhibit structural hallucinations in this high-specification generative task. To address this issue, we propose a novel Retrieval-Augmented Generation (RAG) framework, termed RAGDiffusion, to enhance structure determinacy and mitigate hallucinations by assimilating external knowledge from LLM and databases. RAGDiffusion consists of two core processes: (1) Retrieval-based structure aggregation, which employs contrastive learning and a Structure Locally Linear Embedding (SLLE) to derive global structure and spatial landmarks, providing both soft and hard guidance to counteract structural ambiguities; and (2) Omni-level faithful garment generation, which introduces a three-level alignment that ensures fidelity in structural, pattern, and decoding components within the diffusing. Extensive experiments on challenging real-world datasets demonstrate that RAGDiffusion synthesizes structurally and detail-faithful clothing assets with significant performance improvements, representing a pioneering effort in high-specification faithful generation with RAG to confront intrinsic hallucinations and enhance fidelity.
Abstract:While image-based virtual try-on has made significant strides, emerging approaches still fall short of delivering high-fidelity and robust fitting images across various scenarios, as their models suffer from issues of ill-fitted garment styles and quality degrading during the training process, not to mention the lack of support for various combinations of attire. Therefore, we first propose a lightweight, scalable, operator known as Hydra Block for attire combinations. This is achieved through a parallel attention mechanism that facilitates the feature injection of multiple garments from conditionally encoded branches into the main network. Secondly, to significantly enhance the model's robustness and expressiveness in real-world scenarios, we evolve its potential across diverse settings by synthesizing the residuals of multiple models, as well as implementing a mask region boost strategy to overcome the instability caused by information leakage in existing models. Equipped with the above design, AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap, excelling in producing well-fitting garments replete with photorealistic and rich details. Furthermore, AnyFit's impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.
Abstract:The advents of Artificial Intelligence (AI)-driven models marks a paradigm shift in risk management strategies for meteorological hazards. This study specifically employs tropical cyclones (TCs) as a focal example. We engineer a perturbation-based method to produce ensemble forecasts using the advanced Pangu AI weather model. Unlike traditional approaches that often generate fewer than 20 scenarios from Weather Research and Forecasting (WRF) simulations for one event, our method facilitates the rapid nature of AI-driven model to create thousands of scenarios. We offer open-source access to our model and evaluate its effectiveness through retrospective case studies of significant TC events: Hurricane Irma (2017), Typhoon Mangkhut (2018), and TC Debbie (2017), affecting regions across North America, East Asia, and Australia. Our findings indicate that the AI-generated ensemble forecasts align closely with the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble predictions up to seven days prior to landfall. This approach could substantially enhance the effectiveness of weather forecast-driven risk analysis and management, providing unprecedented operational speed, user-friendliness, and global applicability.
Abstract:Contemporary makeup approaches primarily hinge on unpaired learning paradigms, yet they grapple with the challenges of inaccurate supervision (e.g., face misalignment) and sophisticated facial prompts (including face parsing, and landmark detection). These challenges prohibit low-cost deployment of facial makeup models, especially on mobile devices. To solve above problems, we propose a brand-new learning paradigm, termed "Data Amplify Learning (DAL)," alongside a compact makeup model named "TinyBeauty." The core idea of DAL lies in employing a Diffusion-based Data Amplifier (DDA) to "amplify" limited images for the model training, thereby enabling accurate pixel-to-pixel supervision with merely a handful of annotations. Two pivotal innovations in DDA facilitate the above training approach: (1) A Residual Diffusion Model (RDM) is designed to generate high-fidelity detail and circumvent the detail vanishing problem in the vanilla diffusion models; (2) A Fine-Grained Makeup Module (FGMM) is proposed to achieve precise makeup control and combination while retaining face identity. Coupled with DAL, TinyBeauty necessitates merely 80K parameters to achieve a state-of-the-art performance without intricate face prompts. Meanwhile, TinyBeauty achieves a remarkable inference speed of up to 460 fps on the iPhone 13. Extensive experiments show that DAL can produce highly competitive makeup models using only 5 image pairs.
Abstract:While text-3D editing has made significant strides in leveraging score distillation sampling, emerging approaches still fall short in delivering separable, precise and consistent outcomes that are vital to content creation. In response, we introduce FocalDreamer, a framework that merges base shape with editable parts according to text prompts for fine-grained editing within desired regions. Specifically, equipped with geometry union and dual-path rendering, FocalDreamer assembles independent 3D parts into a complete object, tailored for convenient instance reuse and part-wise control. We propose geometric focal loss and style consistency regularization, which encourage focal fusion and congruent overall appearance. Furthermore, FocalDreamer generates high-fidelity geometry and PBR textures which are compatible with widely-used graphics engines. Extensive experiments have highlighted the superior editing capabilities of FocalDreamer in both quantitative and qualitative evaluations.
Abstract:While lightweight ViT framework has made tremendous progress in image super-resolution, its uni-dimensional self-attention modeling, as well as homogeneous aggregation scheme, limit its effective receptive field (ERF) to include more comprehensive interactions from both spatial and channel dimensions. To tackle these drawbacks, this work proposes two enhanced components under a new Omni-SR architecture. First, an Omni Self-Attention (OSA) block is proposed based on dense interaction principle, which can simultaneously model pixel-interaction from both spatial and channel dimensions, mining the potential correlations across omni-axis (i.e., spatial and channel). Coupling with mainstream window partitioning strategies, OSA can achieve superior performance with compelling computational budgets. Second, a multi-scale interaction scheme is proposed to mitigate sub-optimal ERF (i.e., premature saturation) in shallow models, which facilitates local propagation and meso-/global-scale interactions, rendering an omni-scale aggregation building block. Extensive experiments demonstrate that Omni-SR achieves record-high performance on lightweight super-resolution benchmarks (e.g., 26.95 dB@Urban100 $\times 4$ with only 792K parameters). Our code is available at \url{https://github.com/Francis0625/Omni-SR}.
Abstract:We develop a generalized 3D shape generation prior model, tailored for multiple 3D tasks including unconditional shape generation, point cloud completion, and cross-modality shape generation, etc. On one hand, to precisely capture local fine detailed shape information, a vector quantized variational autoencoder (VQ-VAE) is utilized to index local geometry from a compactly learned codebook based on a broad set of task training data. On the other hand, a discrete diffusion generator is introduced to model the inherent structural dependencies among different tokens. In the meantime, a multi-frequency fusion module (MFM) is developed to suppress high-frequency shape feature fluctuations, guided by multi-frequency contextual information. The above designs jointly equip our proposed 3D shape prior model with high-fidelity, diverse features as well as the capability of cross-modality alignment, and extensive experiments have demonstrated superior performances on various 3D shape generation tasks.
Abstract:Depth map super-resolution (DSR) has been a fundamental task for 3D computer vision. While arbitrary scale DSR is a more realistic setting in this scenario, previous approaches predominantly suffer from the issue of inefficient real-numbered scale upsampling. To explicitly address this issue, we propose a novel continuous depth representation for DSR. The heart of this representation is our proposed Geometric Spatial Aggregator (GSA), which exploits a distance field modulated by arbitrarily upsampled target gridding, through which the geometric information is explicitly introduced into feature aggregation and target generation. Furthermore, bricking with GSA, we present a transformer-style backbone named GeoDSR, which possesses a principled way to construct the functional mapping between local coordinates and the high-resolution output results, empowering our model with the advantage of arbitrary shape transformation ready to help diverse zooming demand. Extensive experimental results on standard depth map benchmarks, e.g., NYU v2, have demonstrated that the proposed framework achieves significant restoration gain in arbitrary scale depth map super-resolution compared with the prior art. Our codes are available at https://github.com/nana01219/GeoDSR.
Abstract:This paper proposes a novel stroke-based rendering (SBR) method that translates images into vivid oil paintings. Previous SBR techniques usually formulate the oil painting problem as pixel-wise approximation. Different from this technique route, we treat oil painting creation as an adaptive sampling problem. Firstly, we compute a probability density map based on the texture complexity of the input image. Then we use the Voronoi algorithm to sample a set of pixels as the stroke anchors. Next, we search and generate an individual oil stroke at each anchor. Finally, we place all the strokes on the canvas to obtain the oil painting. By adjusting the hyper-parameter maximum sampling probability, we can control the oil painting fineness in a linear manner. Comparison with existing state-of-the-art oil painting techniques shows that our results have higher fidelity and more realistic textures. A user opinion test demonstrates that people behave more preference toward our oil paintings than the results of other methods. More interesting results and the code are in https://github.com/TZYSJTU/Im2Oil.
Abstract:We propose an efficient framework, called Simple Swap (SimSwap), aiming for generalized and high fidelity face swapping. In contrast to previous approaches that either lack the ability to generalize to arbitrary identity or fail to preserve attributes like facial expression and gaze direction, our framework is capable of transferring the identity of an arbitrary source face into an arbitrary target face while preserving the attributes of the target face. We overcome the above defects in the following two ways. First, we present the ID Injection Module (IIM) which transfers the identity information of the source face into the target face at feature level. By using this module, we extend the architecture of an identity-specific face swapping algorithm to a framework for arbitrary face swapping. Second, we propose the Weak Feature Matching Loss which efficiently helps our framework to preserve the facial attributes in an implicit way. Extensive experiments on wild faces demonstrate that our SimSwap is able to achieve competitive identity performance while preserving attributes better than previous state-of-the-art methods. The code is already available on github: https://github.com/neuralchen/SimSwap.