Tsinghua University, China
Abstract:Federated Learning (FL) facilitates collaborative training of a global model whose performance is boosted by private data owned by distributed clients, without compromising data privacy. Yet the wide applicability of FL is hindered by entanglement of data distributions across different clients. This paper demonstrates for the first time that by disentangling data distributions FL can in principle achieve efficiencies comparable to those of distributed systems, requiring only one round of communication. To this end, we propose a novel FedDistr algorithm, which employs stable diffusion models to decouple and recover data distributions. Empirical results on the CIFAR100 and DomainNet datasets show that FedDistr significantly enhances model utility and efficiency in both disentangled and near-disentangled scenarios while ensuring privacy, outperforming traditional federated learning methods.
Abstract:In recent years, Federated Learning (FL) has garnered significant attention as a distributed machine learning paradigm. To facilitate the implementation of the right to be forgotten, the concept of federated machine unlearning (FMU) has also emerged. However, current FMU approaches often involve additional time-consuming steps and may not offer comprehensive unlearning capabilities, which renders them less practical in real FL scenarios. In this paper, we introduce FedAU, an innovative and efficient FMU framework aimed at overcoming these limitations. Specifically, FedAU incorporates a lightweight auxiliary unlearning module into the learning process and employs a straightforward linear operation to facilitate unlearning. This approach eliminates the requirement for extra time-consuming steps, rendering it well-suited for FL. Furthermore, FedAU exhibits remarkable versatility. It not only enables multiple clients to carry out unlearning tasks concurrently but also supports unlearning at various levels of granularity, including individual data samples, specific classes, and even at the client level. We conducted extensive experiments on MNIST, CIFAR10, and CIFAR100 datasets to evaluate the performance of FedAU. The results demonstrate that FedAU effectively achieves the desired unlearning effect while maintaining model accuracy.
Abstract:As large language models (LLMs) demonstrate unparalleled performance and generalization ability, LLMs are widely used and integrated into various applications. When it comes to sensitive domains, as commonly described in federated learning scenarios, directly using external LLMs on private data is strictly prohibited by stringent data security and privacy regulations. For local clients, the utilization of LLMs to improve the domain-specific small language models (SLMs), characterized by limited computational resources and domain-specific data, has attracted considerable research attention. By observing that LLMs can empower domain-specific SLMs, existing methods predominantly concentrate on leveraging the public data or LLMs to generate more data to transfer knowledge from LLMs to SLMs. However, due to the discrepancies between LLMs' generated data and clients' domain-specific data, these methods cannot yield substantial improvements in the domain-specific tasks. In this paper, we introduce a Federated Domain-specific Knowledge Transfer (FDKT) framework, which enables domain-specific knowledge transfer from LLMs to SLMs while preserving clients' data privacy. The core insight is to leverage LLMs to augment data based on domain-specific few-shot demonstrations, which are synthesized from private domain data using differential privacy. Such synthetic samples share similar data distribution with clients' private data and allow the server LLM to generate particular knowledge to improve clients' SLMs. The extensive experimental results demonstrate that the proposed FDKT framework consistently and greatly improves SLMs' task performance by around 5\% with a privacy budget of less than 10, compared to local training on private data.
Abstract:Federated learning (FL) enables multiple clients to collaboratively learn a shared model without sharing their individual data. Concerns about utility, privacy, and training efficiency in FL have garnered significant research attention. Differential privacy has emerged as a prevalent technique in FL, safeguarding the privacy of individual user data while impacting utility and training efficiency. Within Differential Privacy Federated Learning (DPFL), previous studies have primarily focused on the utility-privacy trade-off, neglecting training efficiency, which is crucial for timely completion. Moreover, differential privacy achieves privacy by introducing controlled randomness (noise) on selected clients in each communication round. Previous work has mainly examined the impact of noise level ($\sigma$) and communication rounds ($T$) on the privacy-utility dynamic, overlooking other influential factors like the sample ratio ($q$, the proportion of selected clients). This paper systematically formulates an efficiency-constrained utility-privacy bi-objective optimization problem in DPFL, focusing on $\sigma$, $T$, and $q$. We provide a comprehensive theoretical analysis, yielding analytical solutions for the Pareto front. Extensive empirical experiments verify the validity and efficacy of our analysis, offering valuable guidance for low-cost parameter design in DPFL.
Abstract:Most existing image inpainting algorithms are based on a single view, struggling with large holes or the holes containing complicated scenes. Some reference-guided algorithms fill the hole by referring to another viewpoint image and use 2D image alignment. Due to the camera imaging process, simple 2D transformation is difficult to achieve a satisfactory result. In this paper, we propose 3DFill, a simple and efficient method for reference-guided image inpainting. Given a target image with arbitrary hole regions and a reference image from another viewpoint, the 3DFill first aligns the two images by a two-stage method: 3D projection + 2D transformation, which has better results than 2D image alignment. The 3D projection is an overall alignment between images and the 2D transformation is a local alignment focused on the hole region. The entire process of image alignment is self-supervised. We then fill the hole in the target image with the contents of the aligned image. Finally, we use a conditional generation network to refine the filled image to obtain the inpainting result. 3DFill achieves state-of-the-art performance on image inpainting across a variety of wide view shifts and has a faster inference speed than other inpainting models.
Abstract:This paper studies semi-supervised video object segmentation through boosting intra-frame interaction. Recent memory network-based methods focus on exploiting inter-frame temporal reference while paying little attention to intra-frame spatial dependency. Specifically, these segmentation model tends to be susceptible to interference from unrelated nontarget objects in a certain frame. To this end, we propose Global Spectral Filter Memory network (GSFM), which improves intra-frame interaction through learning long-term spatial dependencies in the spectral domain. The key components of GSFM is 2D (inverse) discrete Fourier transform for spatial information mixing. Besides, we empirically find low frequency feature should be enhanced in encoder (backbone) while high frequency for decoder (segmentation head). We attribute this to semantic information extracting role for encoder and fine-grained details highlighting role for decoder. Thus, Low (High) Frequency Module is proposed to fit this circumstance. Extensive experiments on the popular DAVIS and YouTube-VOS benchmarks demonstrate that GSFM noticeably outperforms the baseline method and achieves state-of-the-art performance. Besides, extensive analysis shows that the proposed modules are reasonable and of great generalization ability. Our source code is available at https://github.com/workforai/GSFM.
Abstract:Recently, several spatial-temporal memory-based methods have verified that storing intermediate frames and their masks as memory are helpful to segment target objects in videos. However, they mainly focus on better matching between the current frame and the memory frames without explicitly paying attention to the quality of the memory. Therefore, frames with poor segmentation masks are prone to be memorized, which leads to a segmentation mask error accumulation problem and further affect the segmentation performance. In addition, the linear increase of memory frames with the growth of frame number also limits the ability of the models to handle long videos. To this end, we propose a Quality-aware Dynamic Memory Network (QDMN) to evaluate the segmentation quality of each frame, allowing the memory bank to selectively store accurately segmented frames to prevent the error accumulation problem. Then, we combine the segmentation quality with temporal consistency to dynamically update the memory bank to improve the practicability of the models. Without any bells and whistles, our QDMN achieves new state-of-the-art performance on both DAVIS and YouTube-VOS benchmarks. Moreover, extensive experiments demonstrate that the proposed Quality Assessment Module (QAM) can be applied to memory-based methods as generic plugins and significantly improves performance. Our source code is available at https://github.com/workforai/QDMN.
Abstract:Most existing video tasks related to "human" focus on the segmentation of salient humans, ignoring the unspecified others in the video. Few studies have focused on segmenting and tracking all humans in a complex video, including pedestrians and humans of other states (e.g., seated, riding, or occluded). In this paper, we propose a novel framework, abbreviated as HVISNet, that segments and tracks all presented people in given videos based on a one-stage detector. To better evaluate complex scenes, we offer a new benchmark called HVIS (Human Video Instance Segmentation), which comprises 1447 human instance masks in 805 high-resolution videos in diverse scenes. Extensive experiments show that our proposed HVISNet outperforms the state-of-the-art methods in terms of accuracy at a real-time inference speed (30 FPS), especially on complex video scenes. We also notice that using the center of the bounding box to distinguish different individuals severely deteriorates the segmentation accuracy, especially in heavily occluded conditions. This common phenomenon is referred to as the ambiguous positive samples problem. To alleviate this problem, we propose a mechanism named Inner Center Sampling to improve the accuracy of instance segmentation. Such a plug-and-play inner center sampling mechanism can be incorporated in any instance segmentation models based on a one-stage detector to improve the performance. In particular, it gains 4.1 mAP improvement on the state-of-the-art method in the case of occluded humans. Code and data are available at https://github.com/IIGROUP/HVISNet.
Abstract:Current methods of multi-person pose estimation typically treat the localization and the association of body joints separately. It is convenient but inefficient, leading to additional computation and a waste of time. This paper, however, presents a novel framework PoseDet (Estimating Pose by Detection) to localize and associate body joints simultaneously at higher inference speed. Moreover, we propose the keypoint-aware pose embedding to represent an object in terms of the locations of its keypoints. The proposed pose embedding contains semantic and geometric information, allowing us to access discriminative and informative features efficiently. It is utilized for candidate classification and body joint localization in PoseDet, leading to robust predictions of various poses. This simple framework achieves an unprecedented speed and a competitive accuracy on the COCO benchmark compared with state-of-the-art methods. Extensive experiments on the CrowdPose benchmark show the robustness in the crowd scenes. Source code is available.
Abstract:Euclidean embedding from noisy observations containing outlier errors is an important and challenging problem in statistics and machine learning. Many existing methods would struggle with outliers due to a lack of detection ability. In this paper, we propose a matrix optimization based embedding model that can produce reliable embeddings and identify the outliers jointly. We show that the estimators obtained by the proposed method satisfy a non-asymptotic risk bound, implying that the model provides a high accuracy estimator with high probability when the order of the sample size is roughly the degree of freedom up to a logarithmic factor. Moreover, we show that under some mild conditions, the proposed model also can identify the outliers without any prior information with high probability. Finally, numerical experiments demonstrate that the matrix optimization-based model can produce configurations of high quality and successfully identify outliers even for large networks.