Abstract:Parameter-Efficient Fine-Tuning (PEFT) has gained prominence through low-rank adaptation methods like LoRA. In this paper, we focus on sparsity-based PEFT (SPEFT), which introduces trainable sparse adaptations to the weight matrices in the model, offering greater flexibility in selecting fine-tuned parameters compared to low-rank methods. We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies, and identify simple gradient-based metrics is reliable, and results are on par with the best alternatives, offering both computational efficiency and robust performance. Additionally, we compare static and dynamic masking strategies, finding that static masking, which predetermines non-zero entries before training, delivers efficiency without sacrificing performance, while dynamic masking offers no substantial benefits. Across NLP tasks, a simple gradient-based, static SPEFT consistently outperforms other fine-tuning methods for LLMs, providing a simple yet effective baseline for SPEFT. Our work challenges the notion that complexity is necessary for effective PEFT. Our work is open source and available to the community at [https://github.com/0-ml/speft].
Abstract:Neural networks have achieved remarkable performance across a wide range of tasks, yet they remain susceptible to adversarial perturbations, which pose significant risks in safety-critical applications. With the rise of multimodality, diffusion models have emerged as powerful tools not only for generative tasks but also for various applications such as image editing, inpainting, and super-resolution. However, these models still lack robustness due to limited research on attacking them to enhance their resilience. Traditional attack techniques, such as gradient-based adversarial attacks and diffusion model-based methods, are hindered by computational inefficiencies and scalability issues due to their iterative nature. To address these challenges, we introduce an innovative framework that leverages the distilled backbone of diffusion models and incorporates a precision-optimized noise predictor to enhance the effectiveness of our attack framework. This approach not only enhances the attack's potency but also significantly reduces computational costs. Our framework provides a cutting-edge solution for multi-modal adversarial attacks, ensuring reduced latency and the generation of high-fidelity adversarial examples with superior success rates. Furthermore, we demonstrate that our framework achieves outstanding transferability and robustness against purification defenses, outperforming existing gradient-based attack models in both effectiveness and efficiency.
Abstract:Advancements in lithium battery technology heavily rely on the design and engineering of electrolytes. However, current schemes for molecular design and recipe optimization of electrolytes lack an effective computational-experimental closed loop and often fall short in accurately predicting diverse electrolyte formulation properties. In this work, we introduce Uni-ELF, a novel multi-level representation learning framework to advance electrolyte design. Our approach involves two-stage pretraining: reconstructing three-dimensional molecular structures at the molecular level using the Uni-Mol model, and predicting statistical structural properties (e.g., radial distribution functions) from molecular dynamics simulations at the mixture level. Through this comprehensive pretraining, Uni-ELF is able to capture intricate molecular and mixture-level information, which significantly enhances its predictive capability. As a result, Uni-ELF substantially outperforms state-of-the-art methods in predicting both molecular properties (e.g., melting point, boiling point, synthesizability) and formulation properties (e.g., conductivity, Coulombic efficiency). Moreover, Uni-ELF can be seamlessly integrated into an automatic experimental design workflow. We believe this innovative framework will pave the way for automated AI-based electrolyte design and engineering.
Abstract:The reduced cost and computational and calibration requirements of monocular cameras make them ideal positioning sensors for mobile robots, albeit at the expense of any meaningful depth measurement. Solutions proposed by some scholars to this localization problem involve fusing pose estimates from convolutional neural networks (CNNs) with pose estimates from geometric constraints on motion to generate accurate predictions of robot trajectories. However, the distribution of attitude estimation based on CNN is not uniform, resulting in certain translation problems in the prediction of robot trajectories. This paper proposes improving these CNN-based pose estimates by propagating a SE(3) uniform distribution driven by a particle filter. The particles utilize the same motion model used by the CNN, while updating their weights using CNN-based estimates. The results show that while the rotational component of pose estimation does not consistently improve relative to CNN-based estimation, the translational component is significantly more accurate. This factor combined with the superior smoothness of the filtered trajectories shows that the use of particle filters significantly improves the performance of CNN-based localization algorithms.
Abstract:Document-level relation extraction (RE) aims to identify relations between entities across multiple sentences. Most previous methods focused on document-level RE under full supervision. However, in real-world scenario, it is expensive and difficult to completely label all relations in a document because the number of entity pairs in document-level RE grows quadratically with the number of entities. To solve the common incomplete labeling problem, we propose a unified positive-unlabeled learning framework - shift and squared ranking loss positive-unlabeled (SSR-PU) learning. We use positive-unlabeled (PU) learning on document-level RE for the first time. Considering that labeled data of a dataset may lead to prior shift of unlabeled data, we introduce a PU learning under prior shift of training data. Also, using none-class score as an adaptive threshold, we propose squared ranking loss and prove its Bayesian consistency with multi-label ranking metrics. Extensive experiments demonstrate that our method achieves an improvement of about 14 F1 points relative to the previous baseline with incomplete labeling. In addition, it outperforms previous state-of-the-art results under both fully supervised and extremely unlabeled settings as well.
Abstract:The existence of hybrid noise in hyperspectral images (HSIs) severely degrades the data quality, reduces the interpretation accuracy of HSIs, and restricts the subsequent HSIs applications. In this paper, the spatial-spectral gradient network (SSGN) is presented for mixed noise removal in HSIs. The proposed method employs a spatial-spectral gradient learning strategy, in consideration of the unique spatial structure directionality of sparse noise and spectral differences with additional complementary information for better extracting intrinsic and deep features of HSIs. Based on a fully cascaded multi-scale convolutional network, SSGN can simultaneously deal with the different types of noise in different HSIs or spectra by the use of the same model. The simulated and real-data experiments undertaken in this study confirmed that the proposed SSGN performs better at mixed noise removal than the other state-of-the-art HSI denoising algorithms, in evaluation indices, visual assessments, and time consumption.
Abstract:Destriping is a classical problem in remote sensing image processing. Although considerable effort has been made to remove stripes, few of the existing methods can eliminate stripe noise with arbitrary orientations. This situation makes the removal of oblique stripes in the higher-level remote sensing products become an unfinished and urgent issue. To overcome the challenging problem, we propose a novel destriping model which is self-adjusted to different orientations of stripe noise. First of all, the oriented variation model is designed to accomplish the stripe orientation approximation. In this model, the stripe direction is automatically estimated and then imbedded into the constraint term to depict the along-stripe smoothness of the stripe component. Mainly based on the oriented variation model, a whole destriping framework is proposed by jointly employing an L1-norm constraint and a TV regularization to separately capture the global distribution property of stripe component and the piecewise smoothness of the clean image. The qualitative and quantitative experimental results of both orientation and destriping aspects confirm the effectiveness and stability of the proposed method.