Abstract:Transformer-based human skeleton action recognition has been developed for years. However, the complexity and high parameter count demands of these models hinder their practical applications, especially in resource-constrained environments. In this work, we propose FreqMixForemrV2, which was built upon the Frequency-aware Mixed Transformer (FreqMixFormer) for identifying subtle and discriminative actions with pioneered frequency-domain analysis. We design a lightweight architecture that maintains robust performance while significantly reducing the model complexity. This is achieved through a redesigned frequency operator that optimizes high-frequency and low-frequency parameter adjustments, and a simplified frequency-aware attention module. These improvements result in a substantial reduction in model parameters, enabling efficient deployment with only a minimal sacrifice in accuracy. Comprehensive evaluations of standard datasets (NTU RGB+D, NTU RGB+D 120, and NW-UCLA datasets) demonstrate that the proposed model achieves a superior balance between efficiency and accuracy, outperforming state-of-the-art methods with only 60% of the parameters.
Abstract:Recently, transformers have demonstrated great potential for modeling long-term dependencies from skeleton sequences and thereby gained ever-increasing attention in skeleton action recognition. However, the existing transformer-based approaches heavily rely on the naive attention mechanism for capturing the spatiotemporal features, which falls short in learning discriminative representations that exhibit similar motion patterns. To address this challenge, we introduce the Frequency-aware Mixed Transformer (FreqMixFormer), specifically designed for recognizing similar skeletal actions with subtle discriminative motions. First, we introduce a frequency-aware attention module to unweave skeleton frequency representations by embedding joint features into frequency attention maps, aiming to distinguish the discriminative movements based on their frequency coefficients. Subsequently, we develop a mixed transformer architecture to incorporate spatial features with frequency features to model the comprehensive frequency-spatial patterns. Additionally, a temporal transformer is proposed to extract the global correlations across frames. Extensive experiments show that FreqMiXFormer outperforms SOTA on 3 popular skeleton action recognition datasets, including NTU RGB+D, NTU RGB+D 120, and NW-UCLA datasets.
Abstract:Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of programming, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. To this end, we propose DevBench, a comprehensive benchmark that evaluates LLMs across various stages of the software development lifecycle, including software design, environment setup, implementation, acceptance testing, and unit testing. DevBench features a wide range of programming languages and domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench. Analyses reveal that models struggle with understanding the complex structures in the repository, managing the compilation process, and grasping advanced programming concepts. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications. Our benchmark is available at https://github.com/open-compass/DevBench
Abstract:Vision-language models (VLMs) have shown impressive performance in substantial downstream multi-modal tasks. However, only comparing the fine-tuned performance on downstream tasks leads to the poor interpretability of VLMs, which is adverse to their future improvement. Several prior works have identified this issue and used various probing methods under a zero-shot setting to detect VLMs' limitations, but they all examine VLMs using general datasets instead of specialized ones. In practical applications, VLMs are usually applied to specific scenarios, such as e-commerce and news fields, so the generalization of VLMs in specific domains should be given more attention. In this paper, we comprehensively investigate the capabilities of popular VLMs in a specific field, the food domain. To this end, we build a food caption dataset, Food-500 Cap, which contains 24,700 food images with 494 categories. Each image is accompanied by a detailed caption, including fine-grained attributes of food, such as the ingredient, shape, and color. We also provide a culinary culture taxonomy that classifies each food category based on its geographic origin in order to better analyze the performance differences of VLM in different regions. Experiments on our proposed datasets demonstrate that popular VLMs underperform in the food domain compared with their performance in the general domain. Furthermore, our research reveals severe bias in VLMs' ability to handle food items from different geographic regions. We adopt diverse probing methods and evaluate nine VLMs belonging to different architectures to verify the aforementioned observations. We hope that our study will bring researchers' attention to VLM's limitations when applying them to the domain of food or culinary cultures, and spur further investigations to address this issue.
Abstract:In recent years, remarkable results have been achieved in self-supervised action recognition using skeleton sequences with contrastive learning. It has been observed that the semantic distinction of human action features is often represented by local body parts, such as legs or hands, which are advantageous for skeleton-based action recognition. This paper proposes an attention-based contrastive learning framework for skeleton representation learning, called SkeAttnCLR, which integrates local similarity and global features for skeleton-based action representations. To achieve this, a multi-head attention mask module is employed to learn the soft attention mask features from the skeletons, suppressing non-salient local features while accentuating local salient features, thereby bringing similar local features closer in the feature space. Additionally, ample contrastive pairs are generated by expanding contrastive pairs based on salient and non-salient features with global features, which guide the network to learn the semantic representations of the entire skeleton. Therefore, with the attention mask mechanism, SkeAttnCLR learns local features under different data augmentation views. The experiment results demonstrate that the inclusion of local feature similarity significantly enhances skeleton-based action representation. Our proposed SkeAttnCLR outperforms state-of-the-art methods on NTURGB+D, NTU120-RGB+D, and PKU-MMD datasets.
Abstract:Fully supervised skeleton-based action recognition has achieved great progress with the blooming of deep learning techniques. However, these methods require sufficient labeled data which is not easy to obtain. In contrast, self-supervised skeleton-based action recognition has attracted more attention. With utilizing the unlabeled data, more generalizable features can be learned to alleviate the overfitting problem and reduce the demand of massive labeled training data. Inspired by the MAE, we propose a spatial-temporal masked autoencoder framework for self-supervised 3D skeleton-based action recognition (SkeletonMAE). Following MAE's masking and reconstruction pipeline, we utilize a skeleton based encoder-decoder transformer architecture to reconstruct the masked skeleton sequences. A novel masking strategy, named Spatial-Temporal Masking, is introduced in terms of both joint-level and frame-level for the skeleton sequence. This pre-training strategy makes the encoder output generalizable skeleton features with spatial and temporal dependencies. Given the unmasked skeleton sequence, the encoder is fine-tuned for the action recognition task. Extensive experiments show that our SkeletonMAE achieves remarkable performance and outperforms the state-of-the-art methods on both NTU RGB+D and NTU RGB+D 120 datasets.
Abstract:Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusion. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page: \url{https://github.com/zczcwh/DL-HPE}