Abstract:Diagnosing rare diseases presents a common challenge in clinical practice, necessitating the expertise of specialists for accurate identification. The advent of machine learning offers a promising solution, while the development of such technologies is hindered by the scarcity of data on rare conditions and the demand for models that are both interpretable and trustworthy in a clinical context. Interpretable AI, with its capacity for human-readable outputs, can facilitate validation by clinicians and contribute to medical education. In the current work, we focus on choroid neoplasias, the most prevalent form of eye cancer in adults, albeit rare with 5.1 per million. We built the so-far largest dataset consisting of 750 patients, incorporating three distinct imaging modalities collected from 2004 to 2022. Our work introduces a concept-based interpretable model that distinguishes between three types of choroidal tumors, integrating insights from domain experts via radiological reports. Remarkably, this model not only achieves an F1 score of 0.91, rivaling that of black-box models, but also boosts the diagnostic accuracy of junior doctors by 42%. This study highlights the significant potential of interpretable machine learning in improving the diagnosis of rare diseases, laying a groundwork for future breakthroughs in medical AI that could tackle a wider array of complex health scenarios.
Abstract:Large Language Models (LLMs), such as ChatGPT, LLaMA, GLM, and PaLM, have exhibited remarkable performances across various tasks in recent years. However, LLMs face two main challenges in real-world applications. One challenge is that training LLMs consumes vast computing resources, preventing LLMs from being adopted by small and medium-sized enterprises with limited computing resources. Another is that training LLM requires a large amount of high-quality data, which are often scattered among enterprises. To address these challenges, we propose FATE-LLM, an industrial-grade federated learning framework for large language models. FATE-LLM (1) facilitates federated learning for large language models (coined FedLLM); (2) promotes efficient training of FedLLM using parameter-efficient fine-tuning methods; (3) protects the intellectual property of LLMs; (4) preserves data privacy during training and inference through privacy-preserving mechanisms. We release the code of FATE-LLM at https://github.com/FederatedAI/FATE-LLM to facilitate the research of FedLLM and enable a broad range of industrial applications.
Abstract:Large multimodal language models (LMMs) have achieved significant success in general domains. However, due to the significant differences between medical images and text and general web content, the performance of LMMs in medical scenarios is limited. In ophthalmology, clinical diagnosis relies on multiple modalities of medical images, but unfortunately, multimodal ophthalmic large language models have not been explored to date. In this paper, we study and construct an ophthalmic large multimodal model. Firstly, we use fundus images as an entry point to build a disease assessment and diagnosis pipeline to achieve common ophthalmic disease diagnosis and lesion segmentation. Then, we establish a new ophthalmic multimodal instruction-following and dialogue fine-tuning dataset based on disease-related knowledge data and publicly available real-world medical dialogue. We introduce visual ability into the large language model to complete the ophthalmic large language and vision assistant (OphGLM). Our experimental results demonstrate that the OphGLM model performs exceptionally well, and it has the potential to revolutionize clinical applications in ophthalmology. The dataset, code, and models will be made publicly available at https://github.com/ML-AILab/OphGLM.