Abstract:In this work, we address the limitation of surface fitting-based grasp planning algorithm, which primarily focuses on geometric alignment between the gripper and object surface while overlooking the stability of contact point distribution, often resulting in unstable grasps due to inadequate contact configurations. To overcome this limitation, we propose a novel surface fitting algorithm that integrates contact stability while preserving geometric compatibility. Inspired by human grasping behavior, our method disentangles the grasp pose optimization into three sequential steps: (1) rotation optimization to align contact normals, (2) translation refinement to improve Center of Mass (CoM) alignment, and (3) gripper aperture adjustment to optimize contact point distribution. We validate our approach through simulations on ten YCB dataset objects, demonstrating an 80% improvement in grasp success over conventional surface fitting methods that disregard contact stability. Further details can be found on our project page: https://tomoya-yamanokuchi.github.io/disf-project-page/.
Abstract:Learning control policies for real-world robotic tasks often involve challenges such as multimodality, local discontinuities, and the need for computational efficiency. These challenges arise from the complexity of robotic environments, where multiple solutions may coexist. To address these issues, we propose Composite Gaussian Processes Flows (CGP-Flows), a novel semi-parametric model for robotic policy. CGP-Flows integrate Overlapping Mixtures of Gaussian Processes (OMGPs) with the Continuous Normalizing Flows (CNFs), enabling them to model complex policies addressing multimodality and local discontinuities. This hybrid approach retains the computational efficiency of OMGPs while incorporating the flexibility of CNFs. Experiments conducted in both simulated and real-world robotic tasks demonstrate that CGP-flows significantly improve performance in modeling control policies. In a simulation task, we confirmed that CGP-Flows had a higher success rate compared to the baseline method, and the success rate of GCP-Flow was significantly different from the success rate of other baselines in chi-square tests.
Abstract:Symbolic task representation is a powerful tool for encoding human instructions and domain knowledge. Such instructions guide robots to accomplish diverse objectives and meet constraints through reinforcement learning (RL). Most existing methods are based on fixed mappings from environmental states to symbols. However, in inspection tasks, where equipment conditions must be evaluated from multiple perspectives to avoid errors of oversight, robots must fulfill the same symbol from different states. To help robots respond to flexible symbol mapping, we propose representing symbols and their mapping specifications separately within an RL policy. This approach imposes on RL policy to learn combinations of symbolic instructions and mapping specifications, requiring an efficient learning framework. To cope with this issue, we introduce an approach for learning flexible policies called Symbolic Instructions with Adjustable Mapping Specifications (SIAMS). This paper represents symbolic instructions using linear temporal logic (LTL), a formal language that can be easily integrated into RL. Our method addresses the diversified completion patterns of instructions by (1) a specification-aware state modulation, which embeds differences in mapping specifications in state features, and (2) a symbol-number-based task curriculum, which gradually provides tasks according to the learning's progress. Evaluations in 3D simulations with discrete and continuous action spaces demonstrate that our method outperforms context-aware multitask RL comparisons.
Abstract:This paper investigates a novel nonlinear update rule based on temporal difference (TD) errors in reinforcement learning (RL). The update rule in the standard RL states that the TD error is linearly proportional to the degree of updates, treating all rewards equally without no bias. On the other hand, the recent biological studies revealed that there are nonlinearities in the TD error and the degree of updates, biasing policies optimistic or pessimistic. Such biases in learning due to nonlinearities are expected to be useful and intentionally leftover features in biological learning. Therefore, this research explores a theoretical framework that can leverage the nonlinearity between the degree of the update and TD errors. To this end, we focus on a control as inference framework, since it is known as a generalized formulation encompassing various RL and optimal control methods. In particular, we investigate the uncomputable nonlinear term needed to be approximately excluded in the derivation of the standard RL from control as inference. By analyzing it, Weber-Fechner law (WFL) is found, namely, perception (a.k.a. the degree of updates) in response to stimulus change (a.k.a. TD error) is attenuated by increase in the stimulus intensity (a.k.a. the value function). To numerically reveal the utilities of WFL on RL, we then propose a practical implementation using a reward-punishment framework and modifying the definition of optimality. Analysis of this implementation reveals that two utilities can be expected i) to increase rewards to a certain level early, and ii) to sufficiently suppress punishment. We finally investigate and discuss the expected utilities through simulations and robot experiments. As a result, the proposed RL algorithm with WFL shows the expected utilities that accelerate the reward-maximizing startup and continue to suppress punishments during learning.
Abstract:Automating object shaping by grinding with a robot is a crucial industrial process that involves removing material with a rotating grinding belt. This process generates removal resistance depending on such process conditions as material type, removal volume, and robot grinding posture, all of which complicate the analytical modeling of shape transitions. Additionally, a data-driven approach based on real-world data is challenging due to high data collection costs and the irreversible nature of the process. This paper proposes a Cutting Sequence Diffuser (CSD) for object shaping by grinding. The CSD, which only requires simple simulation data for model learning, offers an efficient way to plan long-horizon action sequences transferable to the real world. Our method designs a smooth action space with constrained small removal volumes to suppress the complexity of the shape transitions caused by removal resistance, thus reducing the reality gap in simulations. Moreover, by using a diffusion model to generate long-horizon action sequences, our approach reduces the planning time and allows for grinding the target shape while adhering to the constraints of a small removal volume per step. Through evaluations in both simulation and real robot experiments, we confirmed that our CSD was effective for grinding to different materials and various target shapes in a short time.
Abstract:In earthwork and construction, excavators often encounter large rocks mixed with various soil conditions, requiring skilled operators. This paper presents a framework for achieving autonomous excavation using reinforcement learning (RL) through a rock excavation simulator. In the simulation, resolution can be defined by the particle size/number in the whole soil space. Fine-resolution simulations closely mimic real-world behavior but demand significant calculation time and challenging sample collection, while coarse-resolution simulations enable faster sample collection but deviate from real-world behavior. To combine the advantages of both resolutions, we explore using policies developed in coarse-resolution simulations for pre-training in fine-resolution simulations. To this end, we propose a novel policy learning framework called Progressive-Resolution Policy Distillation (PRPD), which progressively transfers policies through some middle-resolution simulations with conservative policy transfer to avoid domain gaps that could lead to policy transfer failure. Validation in a rock excavation simulator and nine real-world rock environments demonstrated that PRPD reduced sampling time to less than 1/7 while maintaining task success rates comparable to those achieved through policy learning in a fine-resolution simulation.
Abstract:Cooperative grasping and transportation require effective coordination to complete the task. This study focuses on the approach leveraging force-sensing feedback, where robots use sensors to detect forces applied by others on an object to achieve coordination. Unlike explicit communication, it avoids delays and interruptions; however, force-sensing is highly sensitive and prone to interference from variations in grasping environment, such as changes in grasping force, grasping pose, object size and geometry, which can interfere with force signals, subsequently undermining coordination. We propose multi-agent reinforcement learning (MARL) with ternary force representation, a force representation that maintains consistent representation against variations in grasping environment. The simulation and real-world experiments demonstrate the robustness of the proposed method to changes in grasping force, object size and geometry as well as inherent sim2real gap.
Abstract:Mobile grasping enhances manipulation efficiency by utilizing robots' mobility. This study aims to enable a commercial off-the-shelf robot for mobile grasping, requiring precise timing and pose adjustments. Self-supervised learning can develop a generalizable policy to adjust the robot's velocity and determine grasp position and orientation based on the target object's shape and pose. Due to mobile grasping's complexity, action primitivization and step-by-step learning are crucial to avoid data sparsity in learning from trial and error. This study simplifies mobile grasping into two grasp action primitives and a moving action primitive, which can be operated with limited degrees of freedom for the manipulator. This study introduces three fully convolutional neural network (FCN) models to predict static grasp primitive, dynamic grasp primitive, and residual moving velocity error from visual inputs. A two-stage grasp learning approach facilitates seamless FCN model learning. The ablation study demonstrated that the proposed method achieved the highest grasping accuracy and pick-and-place efficiency. Furthermore, randomizing object shapes and environments in the simulation effectively achieved generalizable mobile grasping.
Abstract:The problem of uncertainty is a feature of real world robotics problems and any control framework must contend with it in order to succeed in real applications tasks. Reinforcement Learning is no different, and epistemic uncertainty arising from model uncertainty or misspecification is a challenge well captured by the sim-to-real gap. A simple solution to this issue is domain randomization (DR), which unfortunately can result in conservative agents. As a remedy to this conservativeness, the use of universal policies that take additional information about the randomized domain has risen as an alternative solution, along with recurrent neural network-based controllers. Uncertainty-aware universal policies present a particularly compelling solution able to account for system identification uncertainties during deployment. In this paper, we reveal that the challenge of efficiently optimizing uncertainty-aware policies can be fundamentally reframed as solving the convex coverage set (CCS) problem within a multi-objective reinforcement learning (MORL) context. By introducing a novel Markov decision process (MDP) framework where each domain's performance is treated as an independent objective, we unify the training of uncertainty-aware policies with MORL approaches. This connection enables the application of MORL algorithms for domain randomization (DR), allowing for more efficient policy optimization. To illustrate this, we focus on the linear utility function, which aligns with the expectation in DR formulations, and propose a series of algorithms adapted from the MORL literature to solve the CCS, demonstrating their ability to enhance the performance of uncertainty-aware policies.
Abstract:A neurochip is a device that reproduces the signal processing mechanisms of brain neurons and calculates Spiking Neural Networks (SNNs) with low power consumption and at high speed. Thus, neurochips are attracting attention from edge robot applications, which suffer from limited battery capacity. This paper aims to achieve deep reinforcement learning (DRL) that acquires SNN policies suitable for neurochip implementation. Since DRL requires a complex function approximation, we focus on conversion techniques from Floating Point NN (FPNN) because it is one of the most feasible SNN techniques. However, DRL requires conversions to SNNs for every policy update to collect the learning samples for a DRL-learning cycle, which updates the FPNN policy and collects the SNN policy samples. Accumulative conversion errors can significantly degrade the performance of the SNN policies. We propose Robust Iterative Value Conversion (RIVC) as a DRL that incorporates conversion error reduction and robustness to conversion errors. To reduce them, FPNN is optimized with the same number of quantization bits as an SNN. The FPNN output is not significantly changed by quantization. To robustify the conversion error, an FPNN policy that is applied with quantization is updated to increase the gap between the probability of selecting the optimal action and other actions. This step prevents unexpected replacements of the policy's optimal actions. We verified RIVC's effectiveness on a neurochip-driven robot. The results showed that RIVC consumed 1/15 times less power and increased the calculation speed by five times more than an edge CPU (quad-core ARM Cortex-A72). The previous framework with no countermeasures against conversion errors failed to train the policies. Videos from our experiments are available: https://youtu.be/Q5Z0-BvK1Tc.