Abstract:This paper investigates a novel nonlinear update rule based on temporal difference (TD) errors in reinforcement learning (RL). The update rule in the standard RL states that the TD error is linearly proportional to the degree of updates, treating all rewards equally without no bias. On the other hand, the recent biological studies revealed that there are nonlinearities in the TD error and the degree of updates, biasing policies optimistic or pessimistic. Such biases in learning due to nonlinearities are expected to be useful and intentionally leftover features in biological learning. Therefore, this research explores a theoretical framework that can leverage the nonlinearity between the degree of the update and TD errors. To this end, we focus on a control as inference framework, since it is known as a generalized formulation encompassing various RL and optimal control methods. In particular, we investigate the uncomputable nonlinear term needed to be approximately excluded in the derivation of the standard RL from control as inference. By analyzing it, Weber-Fechner law (WFL) is found, namely, perception (a.k.a. the degree of updates) in response to stimulus change (a.k.a. TD error) is attenuated by increase in the stimulus intensity (a.k.a. the value function). To numerically reveal the utilities of WFL on RL, we then propose a practical implementation using a reward-punishment framework and modifying the definition of optimality. Analysis of this implementation reveals that two utilities can be expected i) to increase rewards to a certain level early, and ii) to sufficiently suppress punishment. We finally investigate and discuss the expected utilities through simulations and robot experiments. As a result, the proposed RL algorithm with WFL shows the expected utilities that accelerate the reward-maximizing startup and continue to suppress punishments during learning.
Abstract:Many works have recently explored Sim-to-real transferable visual model predictive control (MPC). However, such works are limited to one-shot transfer, where real-world data must be collected once to perform the sim-to-real transfer, which remains a significant human effort in transferring the models learned in simulations to new domains in the real world. To alleviate this problem, we first propose a novel model-learning framework called Kalman Randomized-to-Canonical Model (KRC-model). This framework is capable of extracting task-relevant intrinsic features and their dynamics from randomized images. We then propose Kalman Randomized-to-Canonical Model Predictive Control (KRC-MPC) as a zero-shot sim-to-real transferable visual MPC using KRC-model. The effectiveness of our method is evaluated through a valve rotation task by a robot hand in both simulation and the real world, and a block mating task in simulation. The experimental results show that KRC-MPC can be applied to various real domains and tasks in a zero-shot manner.