Abstract:Photovoltaic (PV) systems allow us to tap into all abundant solar energy, however they require regular maintenance for high efficiency and to prevent degradation. Traditional manual health check, using Electroluminescence (EL) imaging, is expensive and logistically challenging making automated defect detection essential. Current automation approaches require extensive manual expert labeling, which is time-consuming, expensive, and prone to errors. We propose PV-S3 (Photovoltaic-Semi Supervised Segmentation), a Semi-Supervised Learning approach for semantic segmentation of defects in EL images that reduces reliance on extensive labeling. PV-S3 is a Deep learning model trained using a few labeled images along with numerous unlabeled images. We introduce a novel Semi Cross-Entropy loss function to train PV-S3 which addresses the challenges specific to automated PV defect detection, such as diverse defect types and class imbalance. We evaluate PV-S3 on multiple datasets and demonstrate its effectiveness and adaptability. With merely 20% labeled samples, we achieve an absolute improvement of 9.7% in IoU, 29.9% in Precision, 12.75% in Recall, and 20.42% in F1-Score over prior state-of-the-art supervised method (which uses 100% labeled samples) on UCF-EL dataset (largest dataset available for semantic segmentation of EL images) showing improvement in performance while reducing the annotation costs by 80%.
Abstract:In this work, we focus on label efficient learning for video action detection. We develop a novel semi-supervised active learning approach which utilizes both labeled as well as unlabeled data along with informative sample selection for action detection. Video action detection requires spatio-temporal localization along with classification, which poses several challenges for both active learning informative sample selection as well as semi-supervised learning pseudo label generation. First, we propose NoiseAug, a simple augmentation strategy which effectively selects informative samples for video action detection. Next, we propose fft-attention, a novel technique based on high-pass filtering which enables effective utilization of pseudo label for SSL in video action detection by emphasizing on relevant activity region within a video. We evaluate the proposed approach on three different benchmark datasets, UCF-101-24, JHMDB-21, and Youtube-VOS. First, we demonstrate its effectiveness on video action detection where the proposed approach outperforms prior works in semi-supervised and weakly-supervised learning along with several baseline approaches in both UCF101-24 and JHMDB-21. Next, we also show its effectiveness on Youtube-VOS for video object segmentation demonstrating its generalization capability for other dense prediction tasks in videos.
Abstract:The existing work in cross-view geo-localization is based on images where a ground panorama is matched to an aerial image. In this work, we focus on ground videos instead of images which provides additional contextual cues which are important for this task. There are no existing datasets for this problem, therefore we propose GAMa dataset, a large-scale dataset with ground videos and corresponding aerial images. We also propose a novel approach to solve this problem. At clip-level, a short video clip is matched with corresponding aerial image and is later used to get video-level geo-localization of a long video. Moreover, we propose a hierarchical approach to further improve the clip-level geolocalization. It is a challenging dataset, unaligned and limited field of view, and our proposed method achieves a Top-1 recall rate of 19.4% and 45.1% @1.0mile. Code and dataset are available at following link: https://github.com/svyas23/GAMa.
Abstract:Joint visual and language modeling on large-scale datasets has recently shown a good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of such models against various real-world perturbations focusing on video and language. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different textual perturbations. The study reveals some interesting findings: 1) The studied models are more robust when text is perturbed versus when video is perturbed 2) The transformer text encoder is more robust on non-semantic changing text perturbations and visual perturbations compared to word embedding approaches. 3) Using two-branch encoders in isolation is typically more robust than when architectures use cross-attention. We hope this study will serve as a benchmark and guide future research in robust multimodal learning.
Abstract:We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) with some recent transformer based approaches which provide state-of-the-art performance on existing benchmark datasets. However, large-scale robustness has not been studied for these models which is a critical aspect for real-world applications. In this work we perform a large-scale robustness analysis of these existing models for video action recognition. We mainly focus on robustness against distribution shifts due to real-world perturbations instead of adversarial perturbations. We propose four different benchmark datasets, HMDB-51P, UCF-101P, Kinetics-400P, and SSv2P and study the robustness of six different state-of-the-art action recognition models against 90 different perturbations. The study reveals some interesting findings, 1) transformer based models are consistently more robust against most of the perturbations when compared with CNN based models, 2) Pretraining helps Transformer based models to be more robust to different perturbations than CNN based models, and 3) All of the studied models are robust to temporal perturbation on the Kinetics dataset, but not on SSv2; this suggests temporal information is much more important for action label prediction on SSv2 datasets than on the Kinetics dataset. We hope that this study will serve as a benchmark for future research in robust video action recognition. More details about the project are available at https://rose-ar.github.io/.
Abstract:Beyond possessing large enough size to feed data hungry machines (eg, transformers), what attributes measure the quality of a dataset? Assuming that the definitions of such attributes do exist, how do we quantify among their relative existences? Our work attempts to explore these questions for video action detection. The task aims to spatio-temporally localize an actor and assign a relevant action class. We first analyze the existing datasets on video action detection and discuss their limitations. Next, we propose a new dataset, Multi Actor Multi Action (MAMA) which overcomes these limitations and is more suitable for real world applications. In addition, we perform a biasness study which analyzes a key property differentiating videos from static images: the temporal aspect. This reveals if the actions in these datasets really need the motion information of an actor, or whether they predict the occurrence of an action even by looking at a single frame. Finally, we investigate the widely held assumptions on the importance of temporal ordering: is temporal ordering important for detecting these actions? Such extreme experiments show existence of biases which have managed to creep into existing methods inspite of careful modeling.
Abstract:We present LARNet, a novel end-to-end approach for generating human action videos. A joint generative modeling of appearance and dynamics to synthesize a video is very challenging and therefore recent works in video synthesis have proposed to decompose these two factors. However, these methods require a driving video to model the video dynamics. In this work, we propose a generative approach instead, which explicitly learns action dynamics in latent space avoiding the need of a driving video during inference. The generated action dynamics is integrated with the appearance using a recurrent hierarchical structure which induces motion at different scales to focus on both coarse as well as fine level action details. In addition, we propose a novel mix-adversarial loss function which aims at improving the temporal coherency of synthesized videos. We evaluate the proposed approach on four real-world human action datasets demonstrating the effectiveness of the proposed approach in generating human actions. Code available at https://github.com/aayushjr/larnet.
Abstract:We focus on the problem of novel-view human action synthesis. Given an action video, the goal is to generate the same action from an unseen viewpoint. Naturally, novel view video synthesis is more challenging than image synthesis. It requires the synthesis of a sequence of realistic frames with temporal coherency. Besides, transferring the different actions to a novel target view requires awareness of action category and viewpoint change simultaneously. To address these challenges, we propose a novel framework named Pose-guided Action Separable Generative Adversarial Net (PAS-GAN), which utilizes pose to alleviate the difficulty of this task. First, we propose a recurrent pose-transformation module which transforms actions from the source view to the target view and generates novel view pose sequence in 2D coordinate space. Second, a well-transformed pose sequence enables us to separatethe action and background in the target view. We employ a novel local-global spatial transformation module to effectively generate sequential video features in the target view using these action and background features. Finally, the generated video features are used to synthesize human action with the help of a 3D decoder. Moreover, to focus on dynamic action in the video, we propose a novel multi-scale action-separable loss which further improves the video quality. We conduct extensive experiments on two large-scale multi-view human action datasets, NTU-RGBD and PKU-MMD, demonstrating the effectiveness of PAS-GAN which outperforms existing approaches.
Abstract:Deep learning has shown remarkable progress in a wide range of problems. However, efficient training of such models requires large-scale datasets, and getting annotations for such datasets can be challenging and costly. In this work, we explore the use of user-generated freely available labels from web videos for video understanding. We create a benchmark dataset consisting of around 2 million videos with associated user-generated annotations and other meta information. We utilize the collected dataset for action classification and demonstrate its usefulness with existing small-scale annotated datasets, UCF101 and HMDB51. We study different loss functions and two pretraining strategies, simple and self-supervised learning. We also show how a network pretrained on the proposed dataset can help against video corruption and label noise in downstream datasets. We present this as a benchmark dataset in noisy learning for video understanding. The dataset, code, and trained models will be publicly available for future research.
Abstract:This paper summarizes the TinyAction challenge which was organized in ActivityNet workshop at CVPR 2021. This challenge focuses on recognizing real-world low-resolution activities present in videos. Action recognition task is currently focused around classifying the actions from high-quality videos where the actors and the action is clearly visible. While various approaches have been shown effective for recognition task in recent works, they often do not deal with videos of lower resolution where the action is happening in a tiny region. However, many real world security videos often have the actual action captured in a small resolution, making action recognition in a tiny region a challenging task. In this work, we propose a benchmark dataset, TinyVIRAT-v2, which is comprised of naturally occuring low-resolution actions. This is an extension of the TinyVIRAT dataset and consists of actions with multiple labels. The videos are extracted from security videos which makes them realistic and more challenging. We use current state-of-the-art action recognition methods on the dataset as a benchmark, and propose the TinyAction Challenge.