Abstract:A CORDIC-based configuration for the design of Activation Functions (AF) was previously suggested to accelerate ASIC hardware design for resource-constrained systems by providing functional reconfigurability. Since its introduction, this new approach for neural network acceleration has gained widespread popularity, influencing numerous designs for activation functions in both academic and commercial AI processors. In this retrospective analysis, we explore the foundational aspects of this initiative, summarize key developments over recent years, and introduce the DA-VINCI AF tailored for the evolving needs of AI applications. This new generation of dynamically configurable and precision-adjustable activation function cores promise greater adaptability for a range of activation functions in AI workloads, including Swish, SoftMax, SeLU, and GeLU, utilizing the Shift-and-Add CORDIC technique. The previously presented design has been optimized for MAC, Sigmoid, and Tanh functionalities and incorporated into ReLU AFs, culminating in an accumulative NEURIC compute unit. These enhancements position NEURIC as a fundamental component in the resource-efficient vector engine for the realization of AI accelerators that focus on DNNs, RNNs/LSTMs, and Transformers, achieving a quality of results (QoR) of 98.5%.
Abstract:In this work we study Weakly Supervised Spatio-Temporal Video Grounding (WSTVG), a challenging task of localizing subjects spatio-temporally in videos using only textual queries and no bounding box supervision. Inspired by recent advances in vision-language foundation models, we investigate their utility for WSTVG, leveraging their zero-shot grounding capabilities. However, we find that a simple adaptation lacks essential spatio-temporal grounding abilities. To bridge this gap, we introduce Tubelet Referral Grounding (TRG), which connects textual queries to tubelets to enable spatio-temporal predictions. Despite its promise, TRG struggles with compositional action understanding and dense scene scenarios. To address these limitations, we propose STPro, a novel progressive learning framework with two key modules: (1) Sub-Action Temporal Curriculum Learning (SA-TCL), which incrementally builds compositional action understanding, and (2) Congestion-Guided Spatial Curriculum Learning (CG-SCL), which adapts the model to complex scenes by spatially increasing task difficulty. STPro achieves state-of-the-art results on three benchmark datasets, with improvements of 1.0% on VidSTG-Declarative and 3.0% on HCSTVG-v1.
Abstract:Recent works have characterized the function-space inductive bias of infinite-width bounded-norm single-hidden-layer neural networks as a kind of bounded-variation-type space. This novel neural network Banach space encompasses many classical multivariate function spaces including certain Sobolev spaces and the spectral Barron spaces. Notably, this Banach space also includes functions that exhibit less classical regularity such as those that only vary in a few directions. On bounded domains, it is well-established that the Gaussian reproducing kernel Hilbert space (RKHS) strictly embeds into this Banach space, demonstrating a clear gap between the Gaussian RKHS and the neural network Banach space. It turns out that when investigating these spaces on unbounded domains, e.g., all of $\mathbb{R}^d$, the story is fundamentally different. We establish the following fundamental result: Certain functions that lie in the Gaussian RKHS have infinite norm in the neural network Banach space. This provides a nontrivial gap between kernel methods and neural networks by the exhibition of functions in which kernel methods can do strictly better than neural networks.
Abstract:The success of deep networks is crucially attributed to their ability to capture latent features within a representation space. In this work, we investigate whether the underlying learned features of a model can be efficiently retrieved through feedback from an agent, such as a large language model (LLM), in the form of relative \textit{triplet comparisons}. These features may represent various constructs, including dictionaries in LLMs or components of a covariance matrix of Mahalanobis distances. We analyze the feedback complexity associated with learning a feature matrix in sparse settings. Our results establish tight bounds when the agent is permitted to construct activations and demonstrate strong upper bounds in sparse scenarios when the agent's feedback is limited to distributional information. We validate our theoretical findings through experiments on two distinct applications: feature recovery from Recursive Feature Machine-trained models and dictionary extraction from sparse autoencoders trained on Large Language Models.
Abstract:In this work, we focus on Weakly Supervised Spatio-Temporal Video Grounding (WSTVG). It is a multimodal task aimed at localizing specific subjects spatio-temporally based on textual queries without bounding box supervision. Motivated by recent advancements in multi-modal foundation models for grounding tasks, we first explore the potential of state-of-the-art object detection models for WSTVG. Despite their robust zero-shot capabilities, our adaptation reveals significant limitations, including inconsistent temporal predictions, inadequate understanding of complex queries, and challenges in adapting to difficult scenarios. We propose CoSPaL (Contextual Self-Paced Learning), a novel approach which is designed to overcome these limitations. CoSPaL integrates three core components: (1) Tubelet Phrase Grounding (TPG), which introduces spatio-temporal prediction by linking textual queries to tubelets; (2) Contextual Referral Grounding (CRG), which improves comprehension of complex queries by extracting contextual information to refine object identification over time; and (3) Self-Paced Scene Understanding (SPS), a training paradigm that progressively increases task difficulty, enabling the model to adapt to complex scenarios by transitioning from coarse to fine-grained understanding.
Abstract:In this work, we focus on semi-supervised learning for video action detection. Video action detection requires spatiotemporal localization in addition to classification, and a limited amount of labels makes the model prone to unreliable predictions. We present Stable Mean Teacher, a simple end-to-end teacher-based framework that benefits from improved and temporally consistent pseudo labels. It relies on a novel Error Recovery (EoR) module, which learns from students' mistakes on labeled samples and transfers this knowledge to the teacher to improve pseudo labels for unlabeled samples. Moreover, existing spatiotemporal losses do not take temporal coherency into account and are prone to temporal inconsistencies. To address this, we present Difference of Pixels (DoP), a simple and novel constraint focused on temporal consistency, leading to coherent temporal detections. We evaluate our approach on four different spatiotemporal detection benchmarks: UCF101-24, JHMDB21, AVA, and YouTube-VOS. Our approach outperforms the supervised baselines for action detection by an average margin of 23.5% on UCF101-24, 16% on JHMDB21, and 3.3% on AVA. Using merely 10% and 20% of data, it provides competitive performance compared to the supervised baseline trained on 100% annotations on UCF101-24 and JHMDB21, respectively. We further evaluate its effectiveness on AVA for scaling to large-scale datasets and YouTube-VOS for video object segmentation, demonstrating its generalization capability to other tasks in the video domain. Code and models are publicly available.
Abstract:In this work, we investigate the problem of learning distance functions within the query-based learning framework, where a learner is able to pose triplet queries of the form: ``Is $x_i$ closer to $x_j$ or $x_k$?'' We establish formal guarantees on the query complexity required to learn smooth, but otherwise general, distance functions under two notions of approximation: $\omega$-additive approximation and $(1 + \omega)$-multiplicative approximation. For the additive approximation, we propose a global method whose query complexity is quadratic in the size of a finite cover of the sample space. For the (stronger) multiplicative approximation, we introduce a method that combines global and local approaches, utilizing multiple Mahalanobis distance functions to capture local geometry. This method has a query complexity that scales quadratically with both the size of the cover and the ambient space dimension of the sample space.
Abstract:Recent advances in machine learning have led to increased interest in reproducing kernel Banach spaces (RKBS) as a more general framework that extends beyond reproducing kernel Hilbert spaces (RKHS). These works have resulted in the formulation of representer theorems under several regularized learning schemes. However, little is known about an optimization method that encompasses these results in this setting. This paper addresses a learning problem on Banach spaces endowed with a reproducing kernel, focusing on efficient optimization within RKBS. To tackle this challenge, we propose an algorithm based on mirror descent (MDA). Our approach involves an iterative method that employs gradient steps in the dual space of the Banach space using the reproducing kernel. We analyze the convergence properties of our algorithm under various assumptions and establish two types of results: first, we identify conditions under which a linear convergence rate is achievable, akin to optimization in the Euclidean setting, and provide a proof of the linear rate; second, we demonstrate a standard convergence rate in a constrained setting. Moreover, to instantiate this algorithm in practice, we introduce a novel family of RKBSs with $p$-norm ($p \neq 2$), characterized by both an explicit dual map and a kernel.
Abstract:In order to vary the arithmetic resource consumption of neural network applications at runtime, this work proposes the flexible reuse of approximate multipliers for neural network layer computations. We introduce a search algorithm that chooses an appropriate subset of approximate multipliers of a user-defined size from a larger search space and enables retraining to maximize task performance. Unlike previous work, our approach can output more than a single, static assignment of approximate multiplier instances to layers. These different operating points allow a system to gradually adapt its Quality of Service (QoS) to changing environmental conditions by increasing or decreasing its accuracy and resource consumption. QoS-Nets achieves this by reassigning the selected approximate multiplier instances to layers at runtime. To combine multiple operating points with the use of retraining, we propose a fine-tuning scheme that shares the majority of parameters between operating points, with only a small amount of additional parameters required per operating point. In our evaluation on MobileNetV2, QoS-Nets is used to select four approximate multiplier instances for three different operating points. These operating points result in power savings for multiplications between 15.3% and 42.8% at a Top-5 accuracy loss between 0.3 and 2.33 percentage points. Through our fine-tuning scheme, all three operating points only increase the model's parameter count by only 2.75%.
Abstract:Deep Learning is becoming increasingly relevant in Embedded and Internet-of-things applications. However, deploying models on embedded devices poses a challenge due to their resource limitations. This can impact the model's inference accuracy and latency. One potential solution are Early Exit Neural Networks, which adjust model depth dynamically through additional classifiers attached between their hidden layers. However, the real-time termination decision mechanism is critical for the system's efficiency, latency, and sustained accuracy. This paper introduces Difference Detection and Temporal Patience as decision mechanisms for Early Exit Neural Networks. They leverage the temporal correlation present in sensor data streams to efficiently terminate the inference. We evaluate their effectiveness in health monitoring, image classification, and wake-word detection tasks. Our novel contributions were able to reduce the computational footprint compared to established decision mechanisms significantly while maintaining higher accuracy scores. We achieved a reduction of mean operations per inference by up to 80% while maintaining accuracy levels within 5% of the original model. These findings highlight the importance of considering temporal correlation in sensor data to improve the termination decision.