Abstract:A CORDIC-based configuration for the design of Activation Functions (AF) was previously suggested to accelerate ASIC hardware design for resource-constrained systems by providing functional reconfigurability. Since its introduction, this new approach for neural network acceleration has gained widespread popularity, influencing numerous designs for activation functions in both academic and commercial AI processors. In this retrospective analysis, we explore the foundational aspects of this initiative, summarize key developments over recent years, and introduce the DA-VINCI AF tailored for the evolving needs of AI applications. This new generation of dynamically configurable and precision-adjustable activation function cores promise greater adaptability for a range of activation functions in AI workloads, including Swish, SoftMax, SeLU, and GeLU, utilizing the Shift-and-Add CORDIC technique. The previously presented design has been optimized for MAC, Sigmoid, and Tanh functionalities and incorporated into ReLU AFs, culminating in an accumulative NEURIC compute unit. These enhancements position NEURIC as a fundamental component in the resource-efficient vector engine for the realization of AI accelerators that focus on DNNs, RNNs/LSTMs, and Transformers, achieving a quality of results (QoR) of 98.5%.
Abstract:The rapid adaptation of data driven AI models, such as deep learning inference, training, Vision Transformers (ViTs), and other HPC applications, drives a strong need for runtime precision configurable different non linear activation functions (AF) hardware support. Existing solutions support diverse precision or runtime AF reconfigurability but fail to address both simultaneously. This work proposes a flexible and SIMD multiprecision processing element (FlexPE), which supports diverse runtime configurable AFs, including sigmoid, tanh, ReLU and softmax, and MAC operation. The proposed design achieves an improved throughput of up to 16X FxP4, 8X FxP8, 4X FxP16 and 1X FxP32 in pipeline mode with 100% time multiplexed hardware. This work proposes an area efficient multiprecision iterative mode in the SIMD systolic arrays for edge AI use cases. The design delivers superior performance with up to 62X and 371X reductions in DMA reads for input feature maps and weight filters in VGG16, with an energy efficiency of 8.42 GOPS / W within the accuracy loss of 2%. The proposed architecture supports emerging 4-bit computations for DL inference while enhancing throughput in FxP8/16 modes for transformers and other HPC applications. The proposed approach enables future energy-efficient AI accelerators in edge and cloud environments.
Abstract:Deep neural networks (DNNs) offer plenty of challenges in executing efficient computation at edge nodes, primarily due to the huge hardware resource demands. The article proposes HYDRA, hybrid data multiplexing, and runtime layer configurable DNN accelerators to overcome the drawbacks. The work proposes a layer-multiplexed approach, which further reuses a single activation function within the execution of a single layer with improved Fused-Multiply-Accumulate (FMA). The proposed approach works in iterative mode to reuse the same hardware and execute different layers in a configurable fashion. The proposed architectures achieve reductions over 90% of power consumption and resource utilization improvements of state-of-the-art works, with 35.21 TOPSW. The proposed architecture reduces the area overhead (N-1) times required in bandwidth, AF and layer architecture. This work shows HYDRA architecture supports optimal DNN computations while improving performance on resource-constrained edge devices.
Abstract:This paper introduces a Scalable Hierarchical Aware Convolutional Neural Network (SHA-CNN) model architecture for Edge AI applications. The proposed hierarchical CNN model is meticulously crafted to strike a balance between computational efficiency and accuracy, addressing the challenges posed by resource-constrained edge devices. SHA-CNN demonstrates its efficacy by achieving accuracy comparable to state-of-the-art hierarchical models while outperforming baseline models in accuracy metrics. The key innovation lies in the model's hierarchical awareness, enabling it to discern and prioritize relevant features at multiple levels of abstraction. The proposed architecture classifies data in a hierarchical manner, facilitating a nuanced understanding of complex features within the datasets. Moreover, SHA-CNN exhibits a remarkable capacity for scalability, allowing for the seamless incorporation of new classes. This flexibility is particularly advantageous in dynamic environments where the model needs to adapt to evolving datasets and accommodate additional classes without the need for extensive retraining. Testing has been conducted on the PYNQ Z2 FPGA board to validate the proposed model. The results achieved an accuracy of 99.34%, 83.35%, and 63.66% for MNIST, CIFAR-10, and CIFAR-100 datasets, respectively. For CIFAR-100, our proposed architecture performs hierarchical classification with 10% reduced computation while compromising only 0.7% accuracy with the state-of-the-art. The adaptability of SHA-CNN to FPGA architecture underscores its potential for deployment in edge devices, where computational resources are limited. The SHA-CNN framework thus emerges as a promising advancement in the intersection of hierarchical CNNs, scalability, and FPGA-based Edge AI.
Abstract:This paper presents the Hybrid Overestimating Approximate Adder designed to enhance the performance in processing engines, specifically focused on edge AI applications. A novel Plus One Adder design is proposed as an incremental adder in the RCA chain, incorporating a Full Adder with an excess 1 alongside inputs A, B, and Cin. The design approximates outputs to 2 bit values to reduce hardware complexity and improve resource efficiency. The Plus One Adder is integrated into a dynamically reconfigurable HOAA, allowing runtime interchangeability between accurate and approximate overestimation modes. The proposed design is demonstrated for multiple applications, such as Twos complement subtraction and Rounding to even, and the Configurable Activation function, which are critical components of the Processing engine. Our approach shows 21 percent improvement in area efficiency and 33 percent reduction in power consumption, compared to state of the art designs with minimal accuracy loss. Thus, the proposed HOAA could be a promising solution for resource-constrained environments, offering ideal trade-offs between hardware efficiency vs computational accuracy.