Abstract:Current video generation models excel at creating short, realistic clips, but struggle with longer, multi-scene videos. We introduce \texttt{DreamFactory}, an LLM-based framework that tackles this challenge. \texttt{DreamFactory} leverages multi-agent collaboration principles and a Key Frames Iteration Design Method to ensure consistency and style across long videos. It utilizes Chain of Thought (COT) to address uncertainties inherent in large language models. \texttt{DreamFactory} generates long, stylistically coherent, and complex videos. Evaluating these long-form videos presents a challenge. We propose novel metrics such as Cross-Scene Face Distance Score and Cross-Scene Style Consistency Score. To further research in this area, we contribute the Multi-Scene Videos Dataset containing over 150 human-rated videos.
Abstract:The expanding financial markets of the Arab world require sophisticated Arabic NLP tools. To address this need within the banking domain, the Arabic Financial NLP (AraFinNLP) shared task proposes two subtasks: (i) Multi-dialect Intent Detection and (ii) Cross-dialect Translation and Intent Preservation. This shared task uses the updated ArBanking77 dataset, which includes about 39k parallel queries in MSA and four dialects. Each query is labeled with one or more of a common 77 intents in the banking domain. These resources aim to foster the development of robust financial Arabic NLP, particularly in the areas of machine translation and banking chat-bots. A total of 45 unique teams registered for this shared task, with 11 of them actively participated in the test phase. Specifically, 11 teams participated in Subtask 1, while only 1 team participated in Subtask 2. The winning team of Subtask 1 achieved F1 score of 0.8773, and the only team submitted in Subtask 2 achieved a 1.667 BLEU score.
Abstract:Navigating the complexities of language diversity is a central challenge in developing robust natural language processing systems, especially in specialized domains like banking. The Moroccan Dialect (Darija) serves as the common language that blends cultural complexities, historical impacts, and regional differences. The complexities of Darija present a special set of challenges for language models, as it differs from Modern Standard Arabic with strong influence from French, Spanish, and Tamazight, it requires a specific approach for effective communication. To tackle these challenges, this paper introduces \textbf{DarijaBanking}, a novel Darija dataset aimed at enhancing intent classification in the banking domain, addressing the critical need for automatic banking systems (e.g., chatbots) that communicate in the native language of Moroccan clients. DarijaBanking comprises over 1,800 parallel high-quality queries in Darija, Modern Standard Arabic (MSA), English, and French, organized into 24 intent classes. We experimented with various intent classification methods, including full fine-tuning of monolingual and multilingual models, zero-shot learning, retrieval-based approaches, and Large Language Model prompting. One of the main contributions of this work is BERTouch, our BERT-based language model for intent classification in Darija. BERTouch achieved F1-scores of 0.98 for Darija and 0.96 for MSA on DarijaBanking, outperforming the state-of-the-art alternatives including GPT-4 showcasing its effectiveness in the targeted application.
Abstract:In the face of growing vulnerabilities found in open-source software, the need to identify {discreet} security patches has become paramount. The lack of consistency in how software providers handle maintenance often leads to the release of security patches without comprehensive advisories, leaving users vulnerable to unaddressed security risks. To address this pressing issue, we introduce a novel security patch detection system, LLMDA, which capitalizes on Large Language Models (LLMs) and code-text alignment methodologies for patch review, data enhancement, and feature combination. Within LLMDA, we initially utilize LLMs for examining patches and expanding data of PatchDB and SPI-DB, two security patch datasets from recent literature. We then use labeled instructions to direct our LLMDA, differentiating patches based on security relevance. Following this, we apply a PTFormer to merge patches with code, formulating hybrid attributes that encompass both the innate details and the interconnections between the patches and the code. This distinctive combination method allows our system to capture more insights from the combined context of patches and code, hence improving detection precision. Finally, we devise a probabilistic batch contrastive learning mechanism within batches to augment the capability of the our LLMDA in discerning security patches. The results reveal that LLMDA significantly surpasses the start of the art techniques in detecting security patches, underscoring its promise in fortifying software maintenance.
Abstract:Natural language processing of Low-Resource Languages (LRL) is often challenged by the lack of data. Therefore, achieving accurate machine translation (MT) in a low-resource environment is a real problem that requires practical solutions. Research in multilingual models have shown that some LRLs can be handled with such models. However, their large size and computational needs make their use in constrained environments (e.g., mobile/IoT devices or limited/old servers) impractical. In this paper, we address this problem by leveraging the power of large multilingual MT models using knowledge distillation. Knowledge distillation can transfer knowledge from a large and complex teacher model to a simpler and smaller student model without losing much in performance. We also make use of high-resource languages that are related or share the same linguistic root as the target LRL. For our evaluation, we consider Luxembourgish as the LRL that shares some roots and properties with German. We build multiple resource-efficient models based on German, knowledge distillation from the multilingual No Language Left Behind (NLLB) model, and pseudo-translation. We find that our efficient models are more than 30\% faster and perform only 4\% lower compared to the large state-of-the-art NLLB model.
Abstract:We introduce TAPHSIR, a tool for anaphoric ambiguity detection and anaphora resolution in requirements. TAPHSIR facilities reviewing the use of pronouns in a requirements specification and revising those pronouns that can lead to misunderstandings during the development process. To this end, TAPHSIR detects the requirements which have potential anaphoric ambiguity and further attempts interpreting anaphora occurrences automatically. TAPHSIR employs a hybrid solution composed of an ambiguity detection solution based on machine learning and an anaphora resolution solution based on a variant of the BERT language model. Given a requirements specification, TAPHSIR decides for each pronoun occurrence in the specification whether the pronoun is ambiguous or unambiguous, and further provides an automatic interpretation for the pronoun. The output generated by TAPHSIR can be easily reviewed and validated by requirements engineers. TAPHSIR is publicly available on Zenodo (DOI: 10.5281/zenodo.5902117).