Abstract:T-distributed stochastic neighbor embedding (tSNE) is a popular and prize-winning approach for dimensionality reduction and visualizing high-dimensional data. However, tSNE is non-parametric: once visualization is built, tSNE is not designed to incorporate additional data into existing representation. It highly limits the applicability of tSNE to the scenarios where data are added or updated over time (like dashboards or series of data snapshots). In this paper we propose, analyze and evaluate LION-tSNE (Local Interpolation with Outlier coNtrol) - a novel approach for incorporating new data into tSNE representation. LION-tSNE is based on local interpolation in the vicinity of training data, outlier detection and a special outlier mapping algorithm. We show that LION-tSNE method is robust both to outliers and to new samples from existing clusters. We also discuss multiple possible improvements for special cases. We compare LION-tSNE to a comprehensive list of possible benchmark approaches that include multiple interpolation techniques, gradient descent for new data, and neural network approximation.
Abstract:Which topics of machine learning are most commonly addressed in research? This question was initially answered in 2007 by doing a qualitative survey among distinguished researchers. In our study, we revisit this question from a quantitative perspective. Concretely, we collect 54K abstracts of papers published between 2007 and 2016 in leading machine learning journals and conferences. We then use machine learning in order to determine the top 10 topics in machine learning. We not only include models, but provide a holistic view across optimization, data, features, etc. This quantitative approach allows reducing the bias of surveys. It reveals new and up-to-date insights into what the 10 most prolific topics in machine learning research are. This allows researchers to identify popular topics as well as new and rising topics for their research.