Abstract:This paper investigates the intelligent computing task-oriented computing offloading and semantic compression in mobile edge computing (MEC) systems. With the popularity of intelligent applications in various industries, terminals increasingly need to offload intelligent computing tasks with complex demands to MEC servers for computing, which is a great challenge for bandwidth and computing capacity allocation in MEC systems. Considering the accuracy requirement of intelligent computing tasks, we formulate an optimization problem of computing offloading and semantic compression. We jointly optimize the system utility which are represented as computing accuracy and task delay respectively to acquire the optimized system utility. To solve the proposed optimization problem, we decompose it into computing capacity allocation subproblem and compression offloading subproblem and obtain solutions through convex optimization and successive convex approximation. After that, the offloading decisions, computing capacity and compressed ratio are obtained in closed forms. We design the computing offloading and semantic compression algorithm for intelligent computing tasks in MEC systems then. Simulation results represent that our algorithm converges quickly and acquires better performance and resource utilization efficiency through the trend with total number of users and computing capacity compared with benchmarks.
Abstract:The recent advances of AI technology, particularly in AI-Generated Content (AIGC), have enabled everyone to easily generate beautiful paintings with simple text description. With the stunning quality of AI paintings, it is widely questioned whether there still exists difference between human and AI paintings and whether human artists will be replaced by AI. To answer these questions, we develop a computational framework combining neural latent space and aesthetics features with visual analytics to investigate the difference between human and AI paintings. First, with categorical comparison of human and AI painting collections, we find that AI artworks show distributional difference from human artworks in both latent space and some aesthetic features like strokes and sharpness, while in other aesthetic features like color and composition there is less difference. Second, with individual artist analysis of Picasso, we show human artists' strength in evolving new styles compared to AI. Our findings provide concrete evidence for the existing discrepancies between human and AI paintings and further suggest improvements of AI art with more consideration of aesthetics and human artists' involvement.
Abstract:Forest land plays a vital role in global climate, ecosystems, farming and human living environments. Therefore, forest biomass estimation methods are necessary to monitor changes in the forest structure and function, which are key data in natural resources research. Although accurate forest biomass measurements are important in forest inventory and assessments, high-density measurements that involve airborne light detection and ranging (LiDAR) at a low flight height in large mountainous areas are highly expensive. The objective of this study was to quantify the aboveground biomass (AGB) of a plateau mountainous forest reserve using a system that synergistically combines an unmanned aircraft system (UAS)-based digital aerial camera and LiDAR to leverage their complementary advantages. In this study, we utilized digital aerial photogrammetry (DAP), which has the unique advantages of speed, high spatial resolution, and low cost, to compensate for the deficiency of forestry inventory using UAS-based LiDAR that requires terrain-following flight for high-resolution data acquisition. Combined with the sparse LiDAR points acquired by using a high-altitude and high-speed UAS for terrain extraction, dense normalized DAP point clouds can be obtained to produce an accurate and high-resolution canopy height model (CHM). Based on the CHM and spectral attributes obtained from multispectral images, we estimated and mapped the AGB of the region of interest with considerable cost efficiency. Our study supports the development of predictive models for large-scale wall-to-wall AGB mapping by leveraging the complementarity between DAP and LiDAR measurements. This work also reveals the potential of utilizing a UAS-based digital camera and LiDAR synergistically in a plateau mountainous forest area.
Abstract:Registration is a fundamental but critical task in point cloud processing, which usually depends on finding element correspondence from two point clouds. However, the finding of reliable correspondence relies on establishing a robust and discriminative description of elements and the correct matching of corresponding elements. In this letter, we develop a coarse-to-fine registration strategy, which utilizes rotation-invariant features and a new weighted graph matching method for iteratively finding correspondence. In the graph matching method, the similarity of nodes and edges in Euclidean and feature space are formulated to construct the optimization function. The proposed strategy is evaluated using two benchmark datasets and compared with several state-of-the-art methods. Regarding the experimental results, our proposed method can achieve a fine registration with rotation errors of less than 0.2 degrees and translation errors of less than 0.1m.
Abstract:In this work, we propose a novel neural network focusing on semantic labeling of ALS point clouds, which investigates the importance of long-range spatial and channel-wise relations and is termed as global relation-aware attentional network (GraNet). GraNet first learns local geometric description and local dependencies using a local spatial discrepancy attention convolution module (LoSDA). In LoSDA, the orientation information, spatial distribution, and elevation differences are fully considered by stacking several local spatial geometric learning modules and the local dependencies are embedded by using an attention pooling module. Then, a global relation-aware attention module (GRA), consisting of a spatial relation-aware attention module (SRA) and a channel relation aware attention module (CRA), are investigated to further learn the global spatial and channel-wise relationship between any spatial positions and feature vectors. The aforementioned two important modules are embedded in the multi-scale network architecture to further consider scale changes in large urban areas. We conducted comprehensive experiments on two ALS point cloud datasets to evaluate the performance of our proposed framework. The results show that our method can achieve higher classification accuracy compared with other commonly used advanced classification methods. The overall accuracy (OA) of our method on the ISPRS benchmark dataset can be improved to 84.5% to classify nine semantic classes, with an average F1 measure (AvgF1) of 73.5%. In detail, we have following F1 values for each object class: powerlines: 66.3%, low vegetation: 82.8%, impervious surface: 91.8%, car: 80.7%, fence: 51.2%, roof: 94.6%, facades: 62.1%, shrub: 49.9%, trees: 82.1%. Besides, experiments were conducted using a new ALS point cloud dataset covering highly dense urban areas.
Abstract:Access to labeled reference data is one of the grand challenges in supervised machine learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges such as urbanization and climate change using state-of-the-art machine learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark dataset named "So2Sat LCZ42," which consists of local climate zone (LCZ) labels of about half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe. This dataset was labeled by 15 domain experts following a carefully designed labeling work flow and evaluation process over a period of six months. As rarely done in other labeled remote sensing dataset, we conducted rigorous quality assessment by domain experts. The dataset achieved an overall confidence of 85%. We believe this LCZ dataset is a first step towards an unbiased globallydistributed dataset for urban growth monitoring using machine learning methods, because LCZ provide a rather objective measure other than many other semantic land use and land cover classifications. It provides measures of the morphology, compactness, and height of urban areas, which are less dependent on human and culture. This dataset can be accessed from http://doi.org/10.14459/2018mp1483140.
Abstract:Deep neural networks (DNNs) have been used in forensics to identify fake facial images. We investigated several DNN-based forgery forensics models (FFMs) to determine whether they are secure against adversarial attacks. We experimentally demonstrated the existence of individual adversarial perturbations (IAPs) and universal adversarial perturbations (UAPs) that can lead a well-performed FFM to misbehave. Based on iterative procedure, gradient information is used to generate two kinds of IAPs that can be used to fabricate classification and segmentation outputs. In contrast, UAPs are generated on the basis of over-firing. We designed a new objective function that encourages neurons to over-fire, which makes UAP generation feasible even without using training data. Experiments demonstrated the transferability of UAPs across unseen datasets and unseen FFMs. Moreover, we are the first to conduct subjective assessment for imperceptibility of the adversarial perturbations, revealing that the crafted UAPs are visually negligible. There findings provide a baseline for evaluating the adversarial security of FFMs.
Abstract:The rapid development of deep learning techniques has created new challenges in identifying the origin of digital images because generative adversarial networks and variational autoencoders can create plausible digital images whose contents are not present in natural scenes. In this paper, we consider the origin that can be broken down into three categories: natural photographic image (NPI), computer generated graphic (CGG), and deep network generated image (DGI). A method is presented for effectively identifying the origin of digital images that is based on a convolutional neural network (CNN) and uses a local-to-global framework to reduce training complexity. By feeding labeled data, the CNN is trained to predict the origin of local patches cropped from an image. The origin of the full-size image is then determined by majority voting. Unlike previous forensic methods, the CNN takes the raw pixels as input without the aid of "residual map". Experimental results revealed that not only the high-frequency components but also the middle-frequency ones contribute to origin identification. The proposed method achieved up to 95.21% identification accuracy and behaved robustly against several common post-processing operations including JPEG compression, scaling, geometric transformation, and contrast stretching. The quantitative results demonstrate that the proposed method is more effective than handcrafted feature-based methods.