Abstract:Mobile edge computing (MEC) enables low-latency and high-bandwidth applications by bringing computation and data storage closer to end-users. Intelligent computing is an important application of MEC, where computing resources are used to solve intelligent task-related problems based on task requirements. However, efficiently offloading computing and allocating resources for intelligent tasks in MEC systems is a challenging problem due to complex interactions between task requirements and MEC resources. To address this challenge, we investigate joint computing offloading and resource allocation for intelligent tasks in MEC systems. Our goal is to optimize system utility by jointly considering computing accuracy and task delay to achieve maximum system performance. We focus on classification intelligence tasks and formulate an optimization problem that considers both the accuracy requirements of tasks and the parallel computing capabilities of MEC systems. To solve the optimization problem, we decompose it into three subproblems: subcarrier allocation, computing capacity allocation, and compression offloading. We use convex optimization and successive convex approximation to derive closed-form expressions for the subcarrier allocation, offloading decisions, computing capacity, and compressed ratio. Based on our solutions, we design an efficient computing offloading and resource allocation algorithm for intelligent tasks in MEC systems. Our simulation results demonstrate that our proposed algorithm significantly improves the performance of intelligent tasks in MEC systems and achieves a flexible trade-off between system revenue and cost considering intelligent tasks compared with the benchmarks.
Abstract:This paper investigates the semantic extraction task-oriented dynamic multi-time scale user admission and resourceallocation in mobile edge computing (MEC) systems. Amid prevalence artifi cial intelligence applications in various industries,the offloading of semantic extraction tasks which are mainlycomposed of convolutional neural networks of computer vision isa great challenge for communication bandwidth and computing capacity allocation in MEC systems. Considering the stochasticnature of the semantic extraction tasks, we formulate a stochastic optimization problem by modeling it as the dynamic arrival of tasks in the temporal domain. We jointly optimize the system revenue and cost which are represented as user admission in the long term and resource allocation in the short term respectively. To handle the proposed stochastic optimization problem, we decompose it into short-time-scale subproblems and a long-time-scale subproblem by using the Lyapunov optimization technique. After that, the short-time-scale optimization variables of resource allocation, including user association, bandwidth allocation, and computing capacity allocation are obtained in closed form. The user admission optimization on long-time scales is solved by a heuristic iteration method. Then, the multi-time scale user admission and resource allocation algorithm is proposed for dynamic semantic extraction task computing in MEC systems. Simulation results demonstrate that, compared with the benchmarks, the proposed algorithm improves the performance of user admission and resource allocation efficiently and achieves a flexible trade-off between system revenue and cost at multi-time scales and considering semantic extraction tasks.
Abstract:This paper investigates the intelligent computing task-oriented computing offloading and semantic compression in mobile edge computing (MEC) systems. With the popularity of intelligent applications in various industries, terminals increasingly need to offload intelligent computing tasks with complex demands to MEC servers for computing, which is a great challenge for bandwidth and computing capacity allocation in MEC systems. Considering the accuracy requirement of intelligent computing tasks, we formulate an optimization problem of computing offloading and semantic compression. We jointly optimize the system utility which are represented as computing accuracy and task delay respectively to acquire the optimized system utility. To solve the proposed optimization problem, we decompose it into computing capacity allocation subproblem and compression offloading subproblem and obtain solutions through convex optimization and successive convex approximation. After that, the offloading decisions, computing capacity and compressed ratio are obtained in closed forms. We design the computing offloading and semantic compression algorithm for intelligent computing tasks in MEC systems then. Simulation results represent that our algorithm converges quickly and acquires better performance and resource utilization efficiency through the trend with total number of users and computing capacity compared with benchmarks.