Abstract:This paper investigates the semantic extraction task-oriented dynamic multi-time scale user admission and resourceallocation in mobile edge computing (MEC) systems. Amid prevalence artifi cial intelligence applications in various industries,the offloading of semantic extraction tasks which are mainlycomposed of convolutional neural networks of computer vision isa great challenge for communication bandwidth and computing capacity allocation in MEC systems. Considering the stochasticnature of the semantic extraction tasks, we formulate a stochastic optimization problem by modeling it as the dynamic arrival of tasks in the temporal domain. We jointly optimize the system revenue and cost which are represented as user admission in the long term and resource allocation in the short term respectively. To handle the proposed stochastic optimization problem, we decompose it into short-time-scale subproblems and a long-time-scale subproblem by using the Lyapunov optimization technique. After that, the short-time-scale optimization variables of resource allocation, including user association, bandwidth allocation, and computing capacity allocation are obtained in closed form. The user admission optimization on long-time scales is solved by a heuristic iteration method. Then, the multi-time scale user admission and resource allocation algorithm is proposed for dynamic semantic extraction task computing in MEC systems. Simulation results demonstrate that, compared with the benchmarks, the proposed algorithm improves the performance of user admission and resource allocation efficiently and achieves a flexible trade-off between system revenue and cost at multi-time scales and considering semantic extraction tasks.
Abstract:Mobile edge computing (MEC) enables low-latency and high-bandwidth applications by bringing computation and data storage closer to end-users. Intelligent computing is an important application of MEC, where computing resources are used to solve intelligent task-related problems based on task requirements. However, efficiently offloading computing and allocating resources for intelligent tasks in MEC systems is a challenging problem due to complex interactions between task requirements and MEC resources. To address this challenge, we investigate joint computing offloading and resource allocation for intelligent tasks in MEC systems. Our goal is to optimize system utility by jointly considering computing accuracy and task delay to achieve maximum system performance. We focus on classification intelligence tasks and formulate an optimization problem that considers both the accuracy requirements of tasks and the parallel computing capabilities of MEC systems. To solve the optimization problem, we decompose it into three subproblems: subcarrier allocation, computing capacity allocation, and compression offloading. We use convex optimization and successive convex approximation to derive closed-form expressions for the subcarrier allocation, offloading decisions, computing capacity, and compressed ratio. Based on our solutions, we design an efficient computing offloading and resource allocation algorithm for intelligent tasks in MEC systems. Our simulation results demonstrate that our proposed algorithm significantly improves the performance of intelligent tasks in MEC systems and achieves a flexible trade-off between system revenue and cost considering intelligent tasks compared with the benchmarks.
Abstract:Standard views in two-dimensional echocardiography are well established but the quality of acquired images are highly dependent on operator skills and are assessed subjectively. This study is aimed at providing an objective assessment pipeline for echocardiogram image quality by defining a new set of domain-specific quality indicators. Consequently, image quality assessment can thus be automated to enhance clinical measurements, interpretation, and real-time optimization. We have developed deep neural networks for the automated assessment of echocardiographic frame which were randomly sampled from 11,262 adult patients. The private echocardiography dataset consists of 33,784 frames, previously acquired between 2010 and 2020. Deep learning approaches were used to extract the spatiotemporal features and the image quality indicators were evaluated against the mean absolute error. Our quality indicators encapsulate both anatomical and pathological elements to provide multivariate assessment scores for anatomical visibility, clarity, depth-gain and foreshortedness, respectively.