Abstract:In-context learning is a remarkable capability of transformers, referring to their ability to adapt to specific tasks based on a short history or context. Previous research has found that task-specific information is locally encoded within models, though their emergence and functionality remain unclear due to opaque pre-training processes. In this work, we investigate the formation of task vectors in a controlled setting, using models trained from scratch on synthetic datasets. Our findings confirm that task vectors naturally emerge under certain conditions, but the tasks may be relatively weakly and/or non-locally encoded within the model. To promote strong task vectors encoded at a prescribed location within the model, we propose an auxiliary training mechanism based on a task vector prompting loss (TVP-loss). This method eliminates the need to search for task-correlated encodings within the trained model and demonstrably improves robustness and generalization.
Abstract:Machine learning models deployed in open-world scenarios often encounter unfamiliar conditions and perform poorly in unanticipated situations. As AI systems advance and find application in safety-critical domains, effectively handling out-of-distribution (OOD) data is crucial to building open-world learning systems. In this work, we introduce ALOE, a novel active learning algorithm for open-world environments designed to enhance model adaptation by incorporating new OOD classes via a two-stage approach. First, diversity sampling selects a representative set of examples, followed by energy-based OOD detection to prioritize likely unknown classes for annotation. This strategy accelerates class discovery and learning, even under constrained annotation budgets. Evaluations on three long-tailed image classification benchmarks demonstrate that ALOE outperforms traditional active learning baselines, effectively expanding known categories while balancing annotation cost. Our findings reveal a crucial tradeoff between enhancing known-class performance and discovering new classes, setting the stage for future advancements in open-world machine learning.
Abstract:Modern machine learning models deployed often encounter distribution shifts in real-world applications, manifesting as covariate or semantic out-of-distribution (OOD) shifts. These shifts give rise to challenges in OOD generalization and OOD detection. This paper introduces a novel, integrated approach AHA (Adaptive Human-Assisted OOD learning) to simultaneously address both OOD generalization and detection through a human-assisted framework by labeling data in the wild. Our approach strategically labels examples within a novel maximum disambiguation region, where the number of semantic and covariate OOD data roughly equalizes. By labeling within this region, we can maximally disambiguate the two types of OOD data, thereby maximizing the utility of the fixed labeling budget. Our algorithm first utilizes a noisy binary search algorithm that identifies the maximal disambiguation region with high probability. The algorithm then continues with annotating inside the identified labeling region, reaping the full benefit of human feedback. Extensive experiments validate the efficacy of our framework. We observed that with only a few hundred human annotations, our method significantly outperforms existing state-of-the-art methods that do not involve human assistance, in both OOD generalization and OOD detection. Code is publicly available at \url{https://github.com/HaoyueBaiZJU/aha}.
Abstract:Creating specialized large language models requires vast amounts of clean, special purpose data for training and fine-tuning. With only a handful of existing large-scale, domain-specific datasets, creation of new datasets is required in most applications. This requires the development of new application-specific filtering of web-scale data. Filtering with a high-performance, general-purpose LLM such as GPT-4o can be highly effective, but this is extremely expensive at web-scale. This paper proposes SIEVE, a lightweight alternative that matches GPT-4o accuracy at a fraction of the cost. SIEVE can perform up to 500 filtering operations for the cost of one GPT-4o filtering call. The key to SIEVE is a seamless integration of GPT-4o and lightweight T5 models, using active learning to fine-tune T5 in the background with a small number of calls to GPT-4o. Once trained, it performs as well as GPT-4o at a tiny fraction of the cost. We experimentally validate SIEVE on the OpenWebText dataset, using five highly customized filter tasks targeting high quality and domain-specific content. Our results demonstrate the effectiveness and efficiency of our method in curating large, high-quality datasets for language model training at a substantially lower cost (1%) than existing techniques. To further validate SIEVE, experiments show that SIEVE and GPT-4o achieve similar accuracy, with human evaluators preferring SIEVE's filtering results to those of GPT-4o.
Abstract:We present a novel multimodal preference dataset for creative tasks, consisting of over 250 million human ratings on more than 2.2 million captions, collected through crowdsourcing rating data for The New Yorker's weekly cartoon caption contest over the past eight years. This unique dataset supports the development and evaluation of multimodal large language models and preference-based fine-tuning algorithms for humorous caption generation. We propose novel benchmarks for judging the quality of model-generated captions, utilizing both GPT4 and human judgments to establish ranking-based evaluation strategies. Our experimental results highlight the limitations of current fine-tuning methods, such as RLHF and DPO, when applied to creative tasks. Furthermore, we demonstrate that even state-of-the-art models like GPT4 and Claude currently underperform top human contestants in generating humorous captions. As we conclude this extensive data collection effort, we release the entire preference dataset to the research community, fostering further advancements in AI humor generation and evaluation.
Abstract:In this paper, we study multi-task structured bandit problem where the goal is to learn a near-optimal algorithm that minimizes cumulative regret. The tasks share a common structure and the algorithm exploits the shared structure to minimize the cumulative regret for an unseen but related test task. We use a transformer as a decision-making algorithm to learn this shared structure so as to generalize to the test task. The prior work of pretrained decision transformers like DPT requires access to the optimal action during training which may be hard in several scenarios. Diverging from these works, our learning algorithm does not need the knowledge of optimal action per task during training but predicts a reward vector for each of the actions using only the observed offline data from the diverse training tasks. Finally, during inference time, it selects action using the reward predictions employing various exploration strategies in-context for an unseen test task. Our model outperforms other SOTA methods like DPT, and Algorithmic Distillation over a series of experiments on several structured bandit problems (linear, bilinear, latent, non-linear). Interestingly, we show that our algorithm, without the knowledge of the underlying problem structure, can learn a near-optimal policy in-context by leveraging the shared structure across diverse tasks. We further extend the field of pre-trained decision transformers by showing that they can leverage unseen tasks with new actions and still learn the underlying latent structure to derive a near-optimal policy. We validate this over several experiments to show that our proposed solution is very general and has wide applications to potentially emergent online and offline strategies at test time. Finally, we theoretically analyze the performance of our algorithm and obtain generalization bounds in the in-context multi-task learning setting.
Abstract:In this paper, we study safe data collection for the purpose of policy evaluation in tabular Markov decision processes (MDPs). In policy evaluation, we are given a \textit{target} policy and asked to estimate the expected cumulative reward it will obtain. Policy evaluation requires data and we are interested in the question of what \textit{behavior} policy should collect the data for the most accurate evaluation of the target policy. While prior work has considered behavior policy selection, in this paper, we additionally consider a safety constraint on the behavior policy. Namely, we assume there exists a known default policy that incurs a particular expected cost when run and we enforce that the cumulative cost of all behavior policies ran is better than a constant factor of the cost that would be incurred had we always run the default policy. We first show that there exists a class of intractable MDPs where no safe oracle algorithm with knowledge about problem parameters can efficiently collect data and satisfy the safety constraints. We then define the tractability condition for an MDP such that a safe oracle algorithm can efficiently collect data and using that we prove the first lower bound for this setting. We then introduce an algorithm SaVeR for this problem that approximates the safe oracle algorithm and bound the finite-sample mean squared error of the algorithm while ensuring it satisfies the safety constraint. Finally, we show in simulations that SaVeR produces low MSE policy evaluation while satisfying the safety constraint.
Abstract:Learning a good history representation is one of the core challenges of reinforcement learning (RL) in partially observable environments. Recent works have shown the advantages of various auxiliary tasks for facilitating representation learning. However, the effectiveness of such auxiliary tasks has not been fully convincing, especially in partially observable environments that require long-term memorization and inference. In this empirical study, we investigate the effectiveness of future prediction for learning the representations of histories, possibly of extensive length, in partially observable environments. We first introduce an approach that decouples the task of learning history representations from policy optimization via future prediction. Then, our main contributions are two-fold: (a) we demonstrate that the performance of reinforcement learning is strongly correlated with the prediction accuracy of future observations in partially observable environments, and (b) our approach can significantly improve the overall end-to-end approach by preventing high-variance noisy signals from reinforcement learning objectives to influence the representation learning. We illustrate our claims on three types of benchmarks that necessitate the ability to process long histories for high returns.
Abstract:Collecting an over-the-air wireless communications training dataset for deep learning-based communication tasks is relatively simple. However, labeling the dataset requires expert involvement and domain knowledge, may involve private intellectual properties, and is often computationally and financially expensive. Active learning is an emerging area of research in machine learning that aims to reduce the labeling overhead without accuracy degradation. Active learning algorithms identify the most critical and informative samples in an unlabeled dataset and label only those samples, instead of the complete set. In this paper, we introduce active learning for deep learning applications in wireless communications, and present its different categories. We present a case study of deep learning-based mmWave beam selection, where labeling is performed by a compute-intensive algorithm based on exhaustive search. We evaluate the performance of different active learning algorithms on a publicly available multi-modal dataset with different modalities including image and LiDAR. Our results show that using an active learning algorithm for class-imbalanced datasets can reduce labeling overhead by up to 50% for this dataset while maintaining the same accuracy as classical training.
Abstract:Class imbalance is a prevalent issue in real world machine learning applications, often leading to poor performance in rare and minority classes. With an abundance of wild unlabeled data, active learning is perhaps the most effective technique in solving the problem at its root -- collecting a more balanced and informative set of labeled examples during annotation. In this work, we propose a novel algorithm that first identifies the class separation threshold and then annotate the most uncertain examples from the minority classes, close to the separation threshold. Through a novel reduction to one-dimensional active learning, our algorithm DIRECT is able to leverage the classic active learning literature to address issues such as batch labeling and tolerance towards label noise. Compared to existing algorithms, our algorithm saves more than 15\% of the annotation budget compared to state-of-art active learning algorithm and more than 90\% of annotation budget compared to random sampling.