Abstract:Previous studies on two-timescale stochastic approximation (SA) mainly focused on bounding mean-squared errors under diminishing stepsize schemes. In this work, we investigate {\it constant} stpesize schemes through the lens of Markov processes, proving that the iterates of both timescales converge to a unique joint stationary distribution in Wasserstein metric. We derive explicit geometric and non-asymptotic convergence rates, as well as the variance and bias introduced by constant stepsizes in the presence of Markovian noise. Specifically, with two constant stepsizes $\alpha < \beta$, we show that the biases scale linearly with both stepsizes as $\Theta(\alpha)+\Theta(\beta)$ up to higher-order terms, while the variance of the slower iterate (resp., faster iterate) scales only with its own stepsize as $O(\alpha)$ (resp., $O(\beta)$). Unlike previous work, our results require no additional assumptions such as $\beta^2 \ll \alpha$ nor extra dependence on dimensions. These fine-grained characterizations allow tail-averaging and extrapolation techniques to reduce variance and bias, improving mean-squared error bound to $O(\beta^4 + \frac{1}{t})$ for both iterates.
Abstract:In reinforcement learning, offline value function learning is the procedure of using an offline dataset to estimate the expected discounted return from each state when taking actions according to a fixed target policy. The stability of this procedure, i.e., whether it converges to its fixed-point, critically depends on the representations of the state-action pairs. Poorly learned representations can make value function learning unstable, or even divergent. Therefore, it is critical to stabilize value function learning by explicitly shaping the state-action representations. Recently, the class of bisimulation-based algorithms have shown promise in shaping representations for control. However, it is still unclear if this class of methods can stabilize value function learning. In this work, we investigate this question and answer it affirmatively. We introduce a bisimulation-based algorithm called kernel representations for offline policy evaluation (KROPE). KROPE uses a kernel to shape state-action representations such that state-action pairs that have similar immediate rewards and lead to similar next state-action pairs under the target policy also have similar representations. We show that KROPE: 1) learns stable representations and 2) leads to lower value error than baselines. Our analysis provides new theoretical insight into the stability properties of bisimulation-based methods and suggests that practitioners can use these methods for stable and accurate evaluation of offline reinforcement learning agents.
Abstract:We study security threats to Markov games due to information asymmetry and misinformation. We consider an attacker player who can spread misinformation about its reward function to influence the robust victim player's behavior. Given a fixed fake reward function, we derive the victim's policy under worst-case rationality and present polynomial-time algorithms to compute the attacker's optimal worst-case policy based on linear programming and backward induction. Then, we provide an efficient inception ("planting an idea in someone's mind") attack algorithm to find the optimal fake reward function within a restricted set of reward functions with dominant strategies. Importantly, our methods exploit the universal assumption of rationality to compute attacks efficiently. Thus, our work exposes a security vulnerability arising from standard game assumptions under misinformation.
Abstract:We study robust Markov games (RMG) with $s$-rectangular uncertainty. We show a general equivalence between computing a robust Nash equilibrium (RNE) of a $s$-rectangular RMG and computing a Nash equilibrium (NE) of an appropriately constructed regularized MG. The equivalence result yields a planning algorithm for solving $s$-rectangular RMGs, as well as provable robustness guarantees for policies computed using regularized methods. However, we show that even for just reward-uncertain two-player zero-sum matrix games, computing an RNE is PPAD-hard. Consequently, we derive a special uncertainty structure called efficient player-decomposability and show that RNE for two-player zero-sum RMG in this class can be provably solved in polynomial time. This class includes commonly used uncertainty sets such as $L_1$ and $L_\infty$ ball uncertainty sets.
Abstract:In this paper, we study multi-task structured bandit problem where the goal is to learn a near-optimal algorithm that minimizes cumulative regret. The tasks share a common structure and the algorithm exploits the shared structure to minimize the cumulative regret for an unseen but related test task. We use a transformer as a decision-making algorithm to learn this shared structure so as to generalize to the test task. The prior work of pretrained decision transformers like DPT requires access to the optimal action during training which may be hard in several scenarios. Diverging from these works, our learning algorithm does not need the knowledge of optimal action per task during training but predicts a reward vector for each of the actions using only the observed offline data from the diverse training tasks. Finally, during inference time, it selects action using the reward predictions employing various exploration strategies in-context for an unseen test task. Our model outperforms other SOTA methods like DPT, and Algorithmic Distillation over a series of experiments on several structured bandit problems (linear, bilinear, latent, non-linear). Interestingly, we show that our algorithm, without the knowledge of the underlying problem structure, can learn a near-optimal policy in-context by leveraging the shared structure across diverse tasks. We further extend the field of pre-trained decision transformers by showing that they can leverage unseen tasks with new actions and still learn the underlying latent structure to derive a near-optimal policy. We validate this over several experiments to show that our proposed solution is very general and has wide applications to potentially emergent online and offline strategies at test time. Finally, we theoretically analyze the performance of our algorithm and obtain generalization bounds in the in-context multi-task learning setting.
Abstract:We consider the discrete-time infinite-horizon average-reward restless bandit problem. We propose a novel policy that maintains two dynamic subsets of arms: one subset of arms has a nearly optimal state distribution and takes actions according to an Optimal Local Control routine; the other subset of arms is driven towards the optimal state distribution and gradually merged into the first subset. We show that our policy is asymptotically optimal with an $O(\exp(-C N))$ optimality gap for an $N$-armed problem, under the mild assumptions of aperiodic-unichain, non-degeneracy, and local stability. Our policy is the first to achieve exponential asymptotic optimality under the above set of easy-to-verify assumptions, whereas prior work either requires a strong Global Attractor assumption or only achieves an $O(1/\sqrt{N})$ optimality gap. We further discuss the fundamental obstacles in significantly weakening our assumptions. In particular, we prove a lower bound showing that local stability is fundamental for exponential asymptotic optimality.
Abstract:In this work, we investigate stochastic approximation (SA) with Markovian data and nonlinear updates under constant stepsize $\alpha>0$. Existing work has primarily focused on either i.i.d. data or linear update rules. We take a new perspective and carefully examine the simultaneous presence of Markovian dependency of data and nonlinear update rules, delineating how the interplay between these two structures leads to complications that are not captured by prior techniques. By leveraging the smoothness and recurrence properties of the SA updates, we develop a fine-grained analysis of the correlation between the SA iterates $\theta_k$ and Markovian data $x_k$. This enables us to overcome the obstacles in existing analysis and establish for the first time the weak convergence of the joint process $(x_k, \theta_k)_{k\geq0}$. Furthermore, we present a precise characterization of the asymptotic bias of the SA iterates, given by $\mathbb{E}[\theta_\infty]-\theta^\ast=\alpha(b_\text{m}+b_\text{n}+b_\text{c})+O(\alpha^{3/2})$. Here, $b_\text{m}$ is associated with the Markovian noise, $b_\text{n}$ is tied to the nonlinearity, and notably, $b_\text{c}$ represents a multiplicative interaction between the Markovian noise and nonlinearity, which is absent in previous works. As a by-product of our analysis, we derive finite-time bounds on higher moment $\mathbb{E}[\|\theta_k-\theta^\ast\|^{2p}]$ and present non-asymptotic geometric convergence rates for the iterates, along with a Central Limit Theorem.
Abstract:Motivated by Q-learning, we study nonsmooth contractive stochastic approximation (SA) with constant stepsize. We focus on two important classes of dynamics: 1) nonsmooth contractive SA with additive noise, and 2) synchronous and asynchronous Q-learning, which features both additive and multiplicative noise. For both dynamics, we establish weak convergence of the iterates to a stationary limit distribution in Wasserstein distance. Furthermore, we propose a prelimit coupling technique for establishing steady-state convergence and characterize the limit of the stationary distribution as the stepsize goes to zero. Using this result, we derive that the asymptotic bias of nonsmooth SA is proportional to the square root of the stepsize, which stands in sharp contrast to smooth SA. This bias characterization allows for the use of Richardson-Romberg extrapolation for bias reduction in nonsmooth SA.
Abstract:We consider the infinite-horizon, average-reward restless bandit problem in discrete time. We propose a new class of policies that are designed to drive a progressively larger subset of arms toward the optimal distribution. We show that our policies are asymptotically optimal with an $O(1/\sqrt{N})$ optimality gap for an $N$-armed problem, provided that the single-armed relaxed problem is unichain and aperiodic. Our approach departs from most existing work that focuses on index or priority policies, which rely on the Uniform Global Attractor Property (UGAP) to guarantee convergence to the optimum, or a recently developed simulation-based policy, which requires a Synchronization Assumption (SA).
Abstract:Stochastic Approximation (SA) is a widely used algorithmic approach in various fields, including optimization and reinforcement learning (RL). Among RL algorithms, Q-learning is particularly popular due to its empirical success. In this paper, we study asynchronous Q-learning with constant stepsize, which is commonly used in practice for its fast convergence. By connecting the constant stepsize Q-learning to a time-homogeneous Markov chain, we show the distributional convergence of the iterates in Wasserstein distance and establish its exponential convergence rate. We also establish a Central Limit Theory for Q-learning iterates, demonstrating the asymptotic normality of the averaged iterates. Moreover, we provide an explicit expansion of the asymptotic bias of the averaged iterate in stepsize. Specifically, the bias is proportional to the stepsize up to higher-order terms and we provide an explicit expression for the linear coefficient. This precise characterization of the bias allows the application of Richardson-Romberg (RR) extrapolation technique to construct a new estimate that is provably closer to the optimal Q function. Numerical results corroborate our theoretical finding on the improvement of the RR extrapolation method.