Abstract:In this work, we investigate stochastic approximation (SA) with Markovian data and nonlinear updates under constant stepsize $\alpha>0$. Existing work has primarily focused on either i.i.d. data or linear update rules. We take a new perspective and carefully examine the simultaneous presence of Markovian dependency of data and nonlinear update rules, delineating how the interplay between these two structures leads to complications that are not captured by prior techniques. By leveraging the smoothness and recurrence properties of the SA updates, we develop a fine-grained analysis of the correlation between the SA iterates $\theta_k$ and Markovian data $x_k$. This enables us to overcome the obstacles in existing analysis and establish for the first time the weak convergence of the joint process $(x_k, \theta_k)_{k\geq0}$. Furthermore, we present a precise characterization of the asymptotic bias of the SA iterates, given by $\mathbb{E}[\theta_\infty]-\theta^\ast=\alpha(b_\text{m}+b_\text{n}+b_\text{c})+O(\alpha^{3/2})$. Here, $b_\text{m}$ is associated with the Markovian noise, $b_\text{n}$ is tied to the nonlinearity, and notably, $b_\text{c}$ represents a multiplicative interaction between the Markovian noise and nonlinearity, which is absent in previous works. As a by-product of our analysis, we derive finite-time bounds on higher moment $\mathbb{E}[\|\theta_k-\theta^\ast\|^{2p}]$ and present non-asymptotic geometric convergence rates for the iterates, along with a Central Limit Theorem.
Abstract:Motivated by Q-learning, we study nonsmooth contractive stochastic approximation (SA) with constant stepsize. We focus on two important classes of dynamics: 1) nonsmooth contractive SA with additive noise, and 2) synchronous and asynchronous Q-learning, which features both additive and multiplicative noise. For both dynamics, we establish weak convergence of the iterates to a stationary limit distribution in Wasserstein distance. Furthermore, we propose a prelimit coupling technique for establishing steady-state convergence and characterize the limit of the stationary distribution as the stepsize goes to zero. Using this result, we derive that the asymptotic bias of nonsmooth SA is proportional to the square root of the stepsize, which stands in sharp contrast to smooth SA. This bias characterization allows for the use of Richardson-Romberg extrapolation for bias reduction in nonsmooth SA.
Abstract:In this paper, we study the effectiveness of using a constant stepsize in statistical inference via linear stochastic approximation (LSA) algorithms with Markovian data. After establishing a Central Limit Theorem (CLT), we outline an inference procedure that uses averaged LSA iterates to construct confidence intervals (CIs). Our procedure leverages the fast mixing property of constant-stepsize LSA for better covariance estimation and employs Richardson-Romberg (RR) extrapolation to reduce the bias induced by constant stepsize and Markovian data. We develop theoretical results for guiding stepsize selection in RR extrapolation, and identify several important settings where the bias provably vanishes even without extrapolation. We conduct extensive numerical experiments and compare against classical inference approaches. Our results show that using a constant stepsize enjoys easy hyperparameter tuning, fast convergence, and consistently better CI coverage, especially when data is limited.