Abstract:This work proposes a compilation flow using open-source compiler passes to build a framework to achieve ninja performance from a generic linear algebra high-level abstraction. We demonstrate this flow with a proof-of-concept MLIR project that uses input IR in Linalg-on-Tensor from TensorFlow and PyTorch, performs cache-level optimizations and lowering to micro-kernels for efficient vectorization, achieving over 90% of the performance of ninja-written equivalent programs. The contributions of this work include: (1) Packing primitives on the tensor dialect and passes for cache-aware distribution of tensors (single and multi-core) and type-aware instructions (VNNI, BFDOT, BFMMLA), including propagation of shapes across the entire function; (2) A linear algebra pipeline, including tile, fuse and bufferization strategies to get model-level IR into hardware friendly tile calls; (3) A mechanism for micro-kernel lowering to an open source library that supports various CPUs.
Abstract:The imperative need to scale computation across numerous nodes highlights the significance of efficient parallel computing, particularly in the realm of Message Passing Interface (MPI) integration. The challenging parallel programming task of generating MPI-based parallel programs has remained unexplored. This study first investigates the performance of state-of-the-art language models in generating MPI-based parallel programs. Findings reveal that widely used models such as GPT-3.5 and PolyCoder (specialized multi-lingual code models) exhibit notable performance degradation, when generating MPI-based programs compared to general-purpose programs. In contrast, domain-specific models such as MonoCoder, which are pretrained on MPI-related programming languages of C and C++, outperform larger models. Subsequently, we introduce a dedicated downstream task of MPI-based program generation by fine-tuning MonoCoder on HPCorpusMPI. We call the resulting model as MPIrigen. We propose an innovative preprocessing for completion only after observing the whole code, thus enabling better completion with a wider context. Comparative analysis against GPT-3.5 zero-shot performance, using a novel HPC-oriented evaluation method, demonstrates that MPIrigen excels in generating accurate MPI functions up to 0.8 accuracy in location and function predictions, and with more than 0.9 accuracy for argument predictions. The success of this tailored solution underscores the importance of domain-specific fine-tuning in optimizing language models for parallel computing code generation, paving the way for a new generation of automatic parallelization tools. The sources of this work are available at our GitHub MPIrigen repository: https://github.com/Scientific-Computing-Lab-NRCN/MPI-rigen
Abstract:Recently, language models (LMs), especially large language models (LLMs), have revolutionized the field of deep learning. Both encoder-decoder models and prompt-based techniques have shown immense potential for natural language processing and code-based tasks. Over the past several years, many research labs and institutions have invested heavily in high-performance computing, approaching or breaching exascale performance levels. In this paper, we posit that adapting and utilizing such language model-based techniques for tasks in high-performance computing (HPC) would be very beneficial. This study presents our reasoning behind the aforementioned position and highlights how existing ideas can be improved and adapted for HPC tasks.
Abstract:Large language models (LLMs), as epitomized by models like ChatGPT, have revolutionized the field of natural language processing (NLP). Along with this trend, code-based large language models such as StarCoder, WizardCoder, and CodeLlama have emerged, trained extensively on vast repositories of code data. Yet, inherent in their design, these models primarily focus on generative tasks like code generation, code completion, and comment generation, and general support for multiple programming languages. While the generic abilities of code LLMs are useful for many programmers, the area of high-performance computing (HPC) has a narrower set of requirements that make a smaller and more domain-specific LM a smarter choice. This paper introduces OMPGPT, a novel model meticulously designed to harness the inherent strengths of language models for OpenMP pragma generation. Furthermore, we adopt and adapt prompt engineering techniques from the NLP domain to create chain-of-OMP, an innovative strategy designed to enhance OMPGPT's effectiveness. Our extensive evaluations demonstrate that OMPGPT outperforms existing large language models specialized in OpenMP tasks and maintains a notably smaller size, aligning it more closely with the typical hardware constraints of HPC environments. We consider our contribution as a pivotal bridge, connecting the advantage of language models with the specific demands of HPC tasks. The success of OMPGPT lays a solid foundation, suggesting its potential applicability and adaptability to a wider range of HPC tasks, thereby opening new avenues in the field of computational efficiency and effectiveness.
Abstract:With easier access to powerful compute resources, there is a growing trend in AI for software development to develop larger language models (LLMs) to address a variety of programming tasks. Even LLMs applied to tasks from the high-performance computing (HPC) domain are huge in size and demand expensive compute resources for training. This is partly because these LLMs for HPC tasks are obtained by finetuning existing LLMs that support several natural and/or programming languages. We found this design choice confusing - why do we need large LMs trained on natural languages and programming languages unrelated to HPC for HPC-specific tasks? In this line of work, we aim to question choices made by existing LLMs by developing smaller LMs for specific domains - we call them domain-specific LMs. Specifically, we start off with HPC as a domain and build an HPC-specific LM, named MonoCoder, that is orders of magnitude smaller than existing LMs but delivers similar, if not better performance, on non-HPC and HPC tasks. Specifically, we pre-trained MonoCoder on an HPC-specific dataset (named HPCorpus) of C and C++ programs mined from GitHub. We evaluated the performance of MonoCoder against conventional multi-lingual LLMs. Results demonstrate that MonoCoder, although much smaller than existing LMs, achieves similar results on normalized-perplexity tests and much better ones in CodeBLEU competence for high-performance and parallel code generations. Furthermore, fine-tuning the base model for the specific task of parallel code generation (OpenMP parallel for pragmas) demonstrates outstanding results compared to GPT, especially when local misleading semantics are removed by our novel pre-processor Tokompiler, showcasing the ability of domain-specific models to assist in HPC-relevant tasks.
Abstract:Large language models (LLMs) have become increasingly prominent in academia and industry due to their remarkable performance in diverse applications. As these models evolve with increasing parameters, they excel in tasks like sentiment analysis and machine translation. However, even models with billions of parameters face challenges in tasks demanding multi-step reasoning. Code generation and comprehension, especially in C and C++, emerge as significant challenges. While LLMs trained on code datasets demonstrate competence in many tasks, they struggle with rectifying non-compilable C and C++ code. Our investigation attributes this subpar performance to two primary factors: the quality of the training dataset and the inherent complexity of the problem which demands intricate reasoning. Existing "Chain of Thought" (CoT) prompting techniques aim to enhance multi-step reasoning. This approach, however, retains the limitations associated with the latent drawbacks of LLMs. In this work, we propose CompCodeVet, a compiler-guided CoT approach to produce compilable code from non-compilable ones. Diverging from the conventional approach of utilizing larger LLMs, we employ compilers as a teacher to establish a more robust zero-shot thought process. The evaluation of CompCodeVet on two open-source code datasets shows that CompCodeVet has the ability to improve the training dataset quality for LLMs.
Abstract:With easier access to powerful compute resources, there is a growing trend in the field of AI for software development to develop larger and larger language models (LLMs) to address a variety of programming tasks. Even LLMs applied to tasks from the high-performance computing (HPC) domain are huge in size (e.g., billions of parameters) and demand expensive compute resources for training. We found this design choice confusing - why do we need large LLMs trained on natural languages and programming languages unrelated to HPC for HPC-specific tasks? In this line of work, we aim to question design choices made by existing LLMs by developing smaller LLMs for specific domains - we call them domain-specific LLMs. Specifically, we start off with HPC as a domain and propose a novel tokenizer named Tokompiler, designed specifically for preprocessing code in HPC and compilation-centric tasks. Tokompiler leverages knowledge of language primitives to generate language-oriented tokens, providing a context-aware understanding of code structure while avoiding human semantics attributed to code structures completely. We applied Tokompiler to pre-train two state-of-the-art models, SPT-Code and Polycoder, for a Fortran code corpus mined from GitHub. We evaluate the performance of these models against the conventional LLMs. Results demonstrate that Tokompiler significantly enhances code completion accuracy and semantic understanding compared to traditional tokenizers in normalized-perplexity tests, down to ~1 perplexity score. This research opens avenues for further advancements in domain-specific LLMs, catering to the unique demands of HPC and compilation tasks.
Abstract:There is an ever-present need for shared memory parallelization schemes to exploit the full potential of multi-core architectures. The most common parallelization API addressing this need today is OpenMP. Nevertheless, writing parallel code manually is complex and effort-intensive. Thus, many deterministic source-to-source (S2S) compilers have emerged, intending to automate the process of translating serial to parallel code. However, recent studies have shown that these compilers are impractical in many scenarios. In this work, we combine the latest advancements in the field of AI and natural language processing (NLP) with the vast amount of open-source code to address the problem of automatic parallelization. Specifically, we propose a novel approach, called OMPify, to detect and predict the OpenMP pragmas and shared-memory attributes in parallel code, given its serial version. OMPify is based on a Transformer-based model that leverages a graph-based representation of source code that exploits the inherent structure of code. We evaluated our tool by predicting the parallelization pragmas and attributes of a large corpus of (over 54,000) snippets of serial code written in C and C++ languages (Open-OMP-Plus). Our results demonstrate that OMPify outperforms existing approaches, the general-purposed and popular ChatGPT and targeted PragFormer models, in terms of F1 score and accuracy. Specifically, OMPify achieves up to 90% accuracy on commonly-used OpenMP benchmark tests such as NAS, SPEC, and PolyBench. Additionally, we performed an ablation study to assess the impact of different model components and present interesting insights derived from the study. Lastly, we also explored the potential of using data augmentation and curriculum learning techniques to improve the model's robustness and generalization capabilities.
Abstract:Automatic source-to-source parallelization of serial code for shared and distributed memory systems is a challenging task in high-performance computing. While many attempts were made to translate serial code into parallel code for a shared memory environment (usually using OpenMP), none has managed to do so for a distributed memory environment. In this paper, we propose a novel approach, called MPI-rical, for automated MPI code generation using a transformer-based model trained on approximately 25,000 serial code snippets and their corresponding parallelized MPI code out of more than 50,000 code snippets in our corpus (MPICodeCorpus). To evaluate the performance of the model, we first break down the serial code to MPI-based parallel code translation problem into two sub-problems and develop two research objectives: code completion defined as given a location in the source code, predict the MPI function for that location, and code translation defined as predicting an MPI function as well as its location in the source code. We evaluate MPI-rical on MPICodeCorpus dataset and on real-world scientific code benchmarks and compare its performance between the code completion and translation tasks. Our experimental results show that while MPI-rical performs better on the code completion task than the code translation task, the latter is better suited for real-world programming assistance, in which the tool suggests the need for an MPI function regardless of prior knowledge. Overall, our approach represents a significant step forward in automating the parallelization of serial code for distributed memory systems, which can save valuable time and resources for software developers and researchers. The source code used in this work, as well as other relevant sources, are available at: https://github.com/Scientific-Computing-Lab-NRCN/MPI-rical
Abstract:Workloads in modern cloud data centers are becoming increasingly complex. The number of workloads running in cloud data centers has been growing exponentially for the last few years, and cloud service providers (CSP) have been supporting on-demand services in real-time. Realizing the growing complexity of cloud environment and cloud workloads, hardware vendors such as Intel and AMD are increasingly introducing cloud-specific workload acceleration features in their CPU platforms. These features are typically targeted towards popular and commonly-used cloud workloads. Nonetheless, uncommon, customer-specific workloads (unknown workloads), if their characteristics are different from common workloads (known workloads), may not realize the potential of the underlying platform. To address this problem of realizing the full potential of the underlying platform, we develop a machine learning based technique to characterize, profile and predict workloads running in the cloud environment. Experimental evaluation of our technique demonstrates good prediction performance. We also develop techniques to analyze the performance of the model in a standalone manner.