Abstract:Federated Graph Learning (FGL) has become a promising paradigm for collaborative training with distributed and private graph data. One-shot Federated Learning (OFL) enables collaboration in a single communication round to largely reduce communication costs and potential security concerns. However, existing OFL methods are not designed for graph data and existing FGL methods are ineffective within one communication round under both data and model heterogeneity. To mitigate this gap, we are the first to propose a one-shot personalized federated graph learning method for node classification, which is also compatible with the Secure Aggregation scheme. We estimate and aggregate the statistics of class-wise feature distribution to generate a global pseudo-graph on the server, which could be used to train a global graph model. Furthermore, We reveal the under-explored problem of existing personalized FGL methods that their personalized models are biased and neglect the ability to generalize to minorities. To achieve better personalization and generalization simultaneously, we propose a two-stage personalized training to adaptively utilize the personal information from local data and global information from the global pseudo-graph. Comprehensive experiments on 8 multi-scale graph datasets under different partitions with various settings demonstrate our superior performance over state-of-the-art baselines.
Abstract:We introduce a novel bottom-up approach for human body mesh reconstruction, specifically designed to address the challenges posed by partial visibility and occlusion in input images. Traditional top-down methods, relying on whole-body parametric models like SMPL, falter when only a small part of the human is visible, as they require visibility of most of the human body for accurate mesh reconstruction. To overcome this limitation, our method employs a "Divide and Fuse (D&F)" strategy, reconstructing human body parts independently before fusing them, thereby ensuring robustness against occlusions. We design Human Part Parametric Models (HPPM) that independently reconstruct the mesh from a few shape and global-location parameters, without inter-part dependency. A specially designed fusion module then seamlessly integrates the reconstructed parts, even when only a few are visible. We harness a large volume of ground-truth SMPL data to train our parametric mesh models. To facilitate the training and evaluation of our method, we have established benchmark datasets featuring images of partially visible humans with HPPM annotations. Our experiments, conducted on these benchmark datasets, demonstrate the effectiveness of our D&F method, particularly in scenarios with substantial invisibility, where traditional approaches struggle to maintain reconstruction quality.
Abstract:In the evolving application of medical artificial intelligence, federated learning is notable for its ability to protect training data privacy. Federated learning facilitates collaborative model development without the need to share local data from healthcare institutions. Yet, the statistical and system heterogeneity among these institutions poses substantial challenges, which affects the effectiveness of federated learning and hampers the exchange of information between clients. To address these issues, we introduce a novel approach, MH-pFLGB, which employs a global bypass strategy to mitigate the reliance on public datasets and navigate the complexities of non-IID data distributions. Our method enhances traditional federated learning by integrating a global bypass model, which would share the information among the clients, but also serves as part of the network to enhance the performance on each client. Additionally, MH-pFLGB provides a feature fusion module to better combine the local and global features. We validate \model{}'s effectiveness and adaptability through extensive testing on different medical tasks, demonstrating superior performance compared to existing state-of-the-art methods.
Abstract:In medical image segmentation, personalized cross-silo federated learning (FL) is becoming popular for utilizing varied data across healthcare settings to overcome data scarcity and privacy concerns. However, existing methods often suffer from client drift, leading to inconsistent performance and delayed training. We propose a new framework, Personalized Federated Learning via Feature Enhancement (pFLFE), designed to mitigate these challenges. pFLFE consists of two main stages: feature enhancement and supervised learning. The first stage improves differentiation between foreground and background features, and the second uses these enhanced features for learning from segmentation masks. We also design an alternative training approach that requires fewer communication rounds without compromising segmentation quality, even with limited communication resources. Through experiments on three medical segmentation tasks, we demonstrate that pFLFE outperforms the state-of-the-art methods.
Abstract:Federated learning is widely used in medical applications for training global models without needing local data access. However, varying computational capabilities and network architectures (system heterogeneity), across clients pose significant challenges in effectively aggregating information from non-independently and identically distributed (non-IID) data. Current federated learning methods using knowledge distillation require public datasets, raising privacy and data collection issues. Additionally, these datasets require additional local computing and storage resources, which is a burden for medical institutions with limited hardware conditions. In this paper, we introduce a novel federated learning paradigm, named Model Heterogeneous personalized Federated Learning via Injection and Distillation (MH-pFLID). Our framework leverages a lightweight messenger model that carries concentrated information to collect the information from each client. We also develop a set of receiver and transmitter modules to receive and send information from the messenger model, so that the information could be injected and distilled with efficiency.
Abstract:Representation learning frameworks in unlabeled time series have been proposed for medical signal processing. Despite the numerous excellent progresses have been made in previous works, we observe the representation extracted for the time series still does not generalize well. In this paper, we present a Time series (medical signal) Representation Learning framework via Spectrogram (TRLS) to get more informative representations. We transform the input time-domain medical signals into spectrograms and design a time-frequency encoder named Time Frequency RNN (TFRNN) to capture more robust multi-scale representations from the augmented spectrograms. Our TRLS takes spectrogram as input with two types of different data augmentations and maximizes the similarity between positive ones, which effectively circumvents the problem of designing negative samples. Our evaluation of four real-world medical signal datasets focusing on medical signal classification shows that TRLS is superior to the existing frameworks.
Abstract:The rapid identification and accurate diagnosis of breast cancer, known as the killer of women, have become greatly significant for those patients. Numerous breast cancer histopathological image classification methods have been proposed. But they still suffer from two problems. (1) These methods can only hand high-resolution (HR) images. However, the low-resolution (LR) images are often collected by the digital slide scanner with limited hardware conditions. Compared with HR images, LR images often lose some key features like texture, which deeply affects the accuracy of diagnosis. (2) The existing methods have fixed receptive fields, so they can not extract and fuse multi-scale features well for images with different magnification factors. To fill these gaps, we present a \textbf{S}ingle \textbf{H}istopathological \textbf{I}mage \textbf{S}uper-\textbf{R}esolution \textbf{C}lassification network (SHISRCNet), which consists of two modules: Super-Resolution (SR) and Classification (CF) modules. SR module reconstructs LR images into SR ones. CF module extracts and fuses the multi-scale features of SR images for classification. In the training stage, we introduce HR images into the CF module to enhance SHISRCNet's performance. Finally, through the joint training of these two modules, super-resolution and classified of LR images are integrated into our model. The experimental results demonstrate that the effects of our method are close to the SOTA methods with taking HR images as inputs.
Abstract:Convolution neural networks (CNNs) have good performance in low-complexity classification tasks such as acoustic scene classifications (ASCs). However, there are few studies on the relationship between the length of target speech and the size of the convolution kernels. In this paper, we combine Selective Kernel Network with Temporal-Convolution (TC-SKNet) to adjust the receptive field of convolution kernels to solve the problem of variable length of target voice while keeping low-complexity. GridMask is a data augmentation strategy by masking part of the raw data or feature area. It can enhance the generalization of the model as the role of dropout. In our experiments, the performance gain brought by GridMask is stronger than spectrum augmentation in ASCs. Finally, we adopt AutoML to search best structure of TC-SKNet and hyperparameters of GridMask for improving the classification performance. As a result, a peak accuracy of 59.87% TC-SKNet is equivalent to that of SOTA, but the parameters only use 20.9 K.
Abstract:Target speech separation is the process of filtering a certain speaker's voice out of speech mixtures according to the additional speaker identity information provided. Recent works have made considerable improvement by processing signals in the time domain directly. The majority of them take fully overlapped speech mixtures for training. However, since most real-life conversations occur randomly and are sparsely overlapped, we argue that training with different overlap ratio data benefits. To do so, an unavoidable problem is that the popularly used SI-SNR loss has no definition for silent sources. This paper proposes the weighted SI-SNR loss, together with the joint learning of target speech separation and personal VAD. The weighted SI-SNR loss imposes a weight factor that is proportional to the target speaker's duration and returns zero when the target speaker is absent. Meanwhile, the personal VAD generates masks and sets non-target speech to silence. Experiments show that our proposed method outperforms the baseline by 1.73 dB in terms of SDR on fully overlapped speech, as well as by 4.17 dB and 0.9 dB on sparsely overlapped speech of clean and noisy conditions. Besides, with slight degradation in performance, our model could reduce the time costs in inference.