Abstract:Radiology reports are crucial for planning treatment strategies and enhancing doctor-patient communication, yet manually writing these reports is burdensome for radiologists. While automatic report generation offers a solution, existing methods often rely on single-view radiographs, limiting diagnostic accuracy. To address this problem, we propose MCL, a Multi-view enhanced Contrastive Learning method for chest X-ray report generation. Specifically, we first introduce multi-view enhanced contrastive learning for visual representation by maximizing agreements between multi-view radiographs and their corresponding report. Subsequently, to fully exploit patient-specific indications (e.g., patient's symptoms) for report generation, we add a transitional ``bridge" for missing indications to reduce embedding space discrepancies caused by their presence or absence. Additionally, we construct Multi-view CXR and Two-view CXR datasets from public sources to support research on multi-view report generation. Our proposed MCL surpasses recent state-of-the-art methods across multiple datasets, achieving a 5.0% F1 RadGraph improvement on MIMIC-CXR, a 7.3% BLEU-1 improvement on MIMIC-ABN, a 3.1% BLEU-4 improvement on Multi-view CXR, and an 8.2% F1 CheXbert improvement on Two-view CXR.
Abstract:This study employed over 100 hours of high-altitude drone video data from eight intersections in Hohhot to generate a unique and extensive dataset encompassing high-density urban road intersections in China. This research has enhanced the YOLOUAV model to enable precise target recognition on unmanned aerial vehicle (UAV) datasets. An automated calibration algorithm is presented to create a functional dataset in high-density traffic flows, which saves human and material resources. This algorithm can capture up to 200 vehicles per frame while accurately tracking over 1 million road users, including cars, buses, and trucks. Moreover, the dataset has recorded over 50,000 complete lane changes. It is the largest publicly available road user trajectories in high-density urban intersections. Furthermore, this paper updates speed and acceleration algorithms based on UAV elevation and implements a UAV offset correction algorithm. A case study demonstrates the usefulness of the proposed methods, showing essential parameters to evaluate intersections and traffic conditions in traffic engineering. The model can track more than 200 vehicles of different types simultaneously in highly dense traffic on an urban intersection in Hohhot, generating heatmaps based on spatial-temporal traffic flow data and locating traffic conflicts by conducting lane change analysis and surrogate measures. With the diverse data and high accuracy of results, this study aims to advance research and development of UAVs in transportation significantly. The High-Density Intersection Dataset is available for download at https://github.com/Qpu523/High-density-Intersection-Dataset.
Abstract:This work proposes FireRedTTS, a foundation text-to-speech framework, to meet the growing demands for personalized and diverse generative speech applications. The framework comprises three parts: data processing, foundation system, and downstream applications. First, we comprehensively present our data processing pipeline, which transforms massive raw audio into a large-scale high-quality TTS dataset with rich annotations and a wide coverage of content, speaking style, and timbre. Then, we propose a language-model-based foundation TTS system. The speech signal is compressed into discrete semantic tokens via a semantic-aware speech tokenizer, and can be generated by a language model from the prompt text and audio. Then, a two-stage waveform generator is proposed to decode them to the high-fidelity waveform. We present two applications of this system: voice cloning for dubbing and human-like speech generation for chatbots. The experimental results demonstrate the solid in-context learning capability of FireRedTTS, which can stably synthesize high-quality speech consistent with the prompt text and audio. For dubbing, FireRedTTS can clone target voices in a zero-shot way for the UGC scenario and adapt to studio-level expressive voice characters in the PUGC scenario via few-shot fine-tuning with 1-hour recording. Moreover, FireRedTTS achieves controllable human-like speech generation in a casual style with paralinguistic behaviors and emotions via instruction tuning, to better serve spoken chatbots.
Abstract:The long speech sequence has been troubling language models (LM) based TTS approaches in terms of modeling complexity and efficiency. This work proposes SoCodec, a semantic-ordered multi-stream speech codec, to address this issue. It compresses speech into a shorter, multi-stream discrete semantic sequence with multiple tokens at each frame. Meanwhile, the ordered product quantization is proposed to constrain this sequence into an ordered representation. It can be applied with a multi-stream delayed LM to achieve better autoregressive generation along both time and stream axes in TTS. The experimental result strongly demonstrates the effectiveness of the proposed approach, achieving superior performance over baseline systems even if compressing the frameshift of speech from 20ms to 240ms (12x). The ablation studies further validate the importance of learning the proposed ordered multi-stream semantic representation in pursuing shorter speech sequences for efficient LM-based TTS.
Abstract:The proliferation of rumors on social media platforms during significant events, such as the US elections and the COVID-19 pandemic, has a profound impact on social stability and public health. Existing approaches for rumor detection primarily rely on propagation graphs to enhance model effectiveness. However, the presence of noisy and irrelevant structures during the propagation process limits the efficacy of these approaches. To tackle this issue, techniques such as weight adjustment and data augmentation have been proposed. However, these techniques heavily depend on rich original propagation structures, thus hindering performance when dealing with rumors that lack sufficient propagation information in the early propagation stages. In this paper, we propose Key Propagation Graph Generator (KPG), a novel reinforcement learning-based rumor detection framework that generates contextually coherent and informative propagation patterns for events with insufficient topology information, while also identifies indicative substructures for events with redundant and noisy propagation structures. KPG consists of two key components: the Candidate Response Generator (CRG) and the Ending Node Selector (ENS). CRG learns the latent distribution from refined propagation patterns, filtering out noise and generating new candidates for ENS. Simultaneously, ENS identifies the most influential substructures within propagation graphs and generates training data for CRG. Moreover, we introduce an end-to-end framework that utilizes rewards to guide the entire training process via a pre-trained graph neural network. Extensive experiments conducted on four datasets demonstrate the superiority of our KPG compared to the state-of-the-art approaches.
Abstract:The automation of writing imaging reports is a valuable tool for alleviating the workload of radiologists. Crucial steps in this process involve the cross-modal alignment between medical images and reports, as well as the retrieval of similar historical cases. However, the presence of presentation-style vocabulary (e.g., sentence structure and grammar) in reports poses challenges for cross-modal alignment. Additionally, existing methods for similar historical cases retrieval face suboptimal performance owing to the modal gap issue. In response, this paper introduces a novel method, named Factual Serialization Enhancement (FSE), for chest X-ray report generation. FSE begins with the structural entities approach to eliminate presentation-style vocabulary in reports, providing specific input for our model. Then, uni-modal features are learned through cross-modal alignment between images and factual serialization in reports. Subsequently, we present a novel approach to retrieve similar historical cases from the training set, leveraging aligned image features. These features implicitly preserve semantic similarity with their corresponding reference reports, enabling us to calculate similarity solely among aligned features. This effectively eliminates the modal gap issue for knowledge retrieval without the requirement for disease labels. Finally, the cross-modal fusion network is employed to query valuable information from these cases, enriching image features and aiding the text decoder in generating high-quality reports. Experiments on MIMIC-CXR and IU X-ray datasets from both specific and general scenarios demonstrate the superiority of FSE over state-of-the-art approaches in both natural language generation and clinical efficacy metrics.
Abstract:Lane changes are complex driving behaviors and frequently involve safety-critical situations. This study aims to develop a lane-change-related evasive behavior model, which can facilitate the development of safety-aware traffic simulations and predictive collision avoidance systems. Large-scale connected vehicle data from the Safety Pilot Model Deployment (SPMD) program were used for this study. A new surrogate safety measure, two-dimensional time-to-collision (2D-TTC), was proposed to identify the safety-critical situations during lane changes. The validity of 2D-TTC was confirmed by showing a high correlation between the detected conflict risks and the archived crashes. A deep deterministic policy gradient (DDPG) algorithm, which could learn the sequential decision-making process over continuous action spaces, was used to model the evasive behaviors in the identified safety-critical situations. The results showed the superiority of the proposed model in replicating both the longitudinal and lateral evasive behaviors.
Abstract:Node embedding learns a low-dimensional representation for each node in the graph. Recent progress on node embedding shows that proximity matrix factorization methods gain superb performance and scale to large graphs with millions of nodes. Existing approaches first define a proximity matrix and then learn the embeddings that fit the proximity by matrix factorization. Most existing matrix factorization methods adopt the same proximity for different tasks, while it is observed that different tasks and datasets may require different proximity, limiting their representation power. Motivated by this, we propose {\em Lemane}, a framework with trainable proximity measures, which can be learned to best suit the datasets and tasks at hand automatically. Our method is end-to-end, which incorporates differentiable SVD in the pipeline so that the parameters can be trained via backpropagation. However, this learning process is still expensive on large graphs. To improve the scalability, we train proximity measures only on carefully subsampled graphs, and then apply standard proximity matrix factorization on the original graph using the learned proximity. Note that, computing the learned proximities for each pair is still expensive for large graphs, and existing techniques for computing proximities are not applicable to the learned proximities. Thus, we present generalized push techniques to make our solution scalable to large graphs with millions of nodes. Extensive experiments show that our proposed solution outperforms existing solutions on both link prediction and node classification tasks on almost all datasets.